A022844 a(n) = floor(n*Pi).
0, 3, 6, 9, 12, 15, 18, 21, 25, 28, 31, 34, 37, 40, 43, 47, 50, 53, 56, 59, 62, 65, 69, 72, 75, 78, 81, 84, 87, 91, 94, 97, 100, 103, 106, 109, 113, 116, 119, 122, 125, 128, 131, 135, 138, 141, 144, 147, 150, 153, 157, 160, 163, 166, 169, 172, 175, 179, 182, 185, 188, 191, 194
Offset: 0
Keywords
Examples
a(7)=21 because 7*Pi=21.9911... and a(8)=25 because 8*Pi=25.1327.... a(100000)=314159 because Pi=3.141592...
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Beatty Sequence.
- Index entries for sequences related to Beatty sequences
Programs
-
Magma
R:=RieldField(10); [Floor(n*Pi(R)): n in [0..80]]; // G. C. Greubel, Sep 28 2018
-
Maple
a:=n->floor(n*Pi): seq(a(n),n=0..70); # Muniru A Asiru, Sep 28 2018
-
Mathematica
Floor[Pi Range[0,200]] (* Harvey P. Dale, Aug 27 2024 *)
-
PARI
vector(80, n, n--; floor(n*Pi)) \\ G. C. Greubel, Sep 28 2018
Formula
a(n)/n converges to Pi because |a(n)/n - Pi| = |a(n) - n*Pi|/n < 1/n. - Hieronymus Fischer, Jan 22 2006
Extensions
Previous Mathematica program replaced by Harvey P. Dale, Aug 27 2024
Comments