cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022916 Multinomial coefficient n!/([n/3]![(n+1)/3]![(n+2)/3]!).

Original entry on oeis.org

1, 1, 2, 6, 12, 30, 90, 210, 560, 1680, 4200, 11550, 34650, 90090, 252252, 756756, 2018016, 5717712, 17153136, 46558512, 133024320, 399072960, 1097450640, 3155170590, 9465511770, 26293088250, 75957810500, 227873431500, 638045608200, 1850332263780, 5550996791340
Offset: 0

Views

Author

Clark Kimberling, Jun 14 1998

Keywords

Comments

Number of permutation patterns modulo 3. This matches the multinomial formula. - Olivier Gérard, Feb 25 2011
Also the number of permutations of n elements where p(k-3) < p(k) for all k. - Joerg Arndt, Jul 23 2011
Also the number of n-step walks on cubic lattice starting at (0,0,0), ending at (floor(n/3), floor((n+1)/3), floor((n+2)/3)), remaining in the first (nonnegative) octant and using steps (0,0,1), (0,1,0), and (1,0,0). - Alois P. Heinz, Oct 11 2019

Examples

			Starting from n=4, several permutations have the same pattern. Both (3,1,4,2) and (3,4,1,2) have pattern (0, 1, 1, 2) modulo 3.
		

Crossrefs

A006480(n) = a(3*n).
Cf. A001405 (permutation patterns mod 2).
Cf. A022917 (permutation patterns mod 4).

Programs

  • Maple
    a:= n-> combinat[multinomial](n, floor((n+i)/3)$i=0..2):
    seq(a(n), n=0..24);  # Alois P. Heinz, Oct 11 2019
  • Mathematica
    Table[ n!/(Quotient[n, 3]!*Quotient[n + 1, 3]!*Quotient[n + 2, 3]!), {n, 0, 30}]
    Table[n!/Times@@(Floor/@((n+{0,1,2})/3)!),{n,0,30}] (* Harvey P. Dale, Jul 13 2012 *)
    Table[Multinomial[Floor[n/3], Floor[(n+1)/3], Floor[(n+2)/3]], {n, 0, 30}] (* Jean-François Alcover, Jun 24 2015 *)
  • PARI
    a(n)=n!/((n\3)!*((n+1)\3)!*((n+2)\3)!)
    
  • PARI
    {a(n)= if(n<0, 0, n!/(n\3)!/((n+1)\3)!/((n+2)\3)!)} /* Michael Somos, Jun 20 2007 */

Formula

Recurrence: (n+1)*(n+2)*(3*n+1)*a(n) = 3*(3*n^2 + 3*n + 2)*a(n-1) + 27*(n-1)*(n+2)*a(n-2) + 27*(n-2)*(n-1)*(3*n+4)*a(n-3). - Vaclav Kotesovec, Feb 26 2014
a(n) ~ 3^(n+3/2) / (2*Pi*n). - Vaclav Kotesovec, Feb 26 2014

Extensions

Corrected by Michael Somos, Jun 20 2007