cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023003 Number of partitions of n into parts of 4 kinds.

Original entry on oeis.org

1, 4, 14, 40, 105, 252, 574, 1240, 2580, 5180, 10108, 19208, 35693, 64960, 116090, 203984, 353017, 602348, 1014580, 1688400, 2778517, 4524760, 7296752, 11658920, 18468245, 29015700, 45235414, 70005376, 107585845, 164245380, 249162620, 375704920, 563251038
Offset: 0

Views

Author

Keywords

Comments

a(n) is Euler transform of A010709. - Alois P. Heinz, Oct 17 2008

Crossrefs

4th column of A144064.

Programs

  • Julia
    # DedekindEta is defined in A000594.
    A023003List(len) = DedekindEta(len, -4)
    A023003List(33) |> println # Peter Luschny, Mar 10 2018
  • Maple
    with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*4, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Oct 17 2008
  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^k)^4,{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Feb 28 2015 *)
    CoefficientList[1/QPochhammer[x]^4 + O[x]^40, x] (* Jean-François Alcover, Jan 31 2016 *)
  • PARI
    \ps100
    for(n=0,100,print1((polcoeff(1/eta(x)^4,n,x)),","))
    

Formula

G.f.: Product_{m>=1} 1/(1-x^m)^4.
a(0)=1, a(n) = (1/n) * Sum_{k=0..n-1} 4*a(k)*sigma_1(n-k). - Joerg Arndt, Feb 05 2011
a(n) ~ exp(2 * Pi * sqrt(2*n/3)) / (2^(7/4) * 3^(5/4) * n^(7/4)) * (1 - (35*sqrt(3)/(16*Pi) + Pi/(3*sqrt(3))) / sqrt(n)). - Vaclav Kotesovec, Feb 28 2015, extended Jan 16 2017
G.f.: exp(4*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018
From Peter Bala, Oct 05 2023: (Start)
The even bisection of the g.f. A(x) is (A(x) + A(-x))/2 = 1 + 14*x^2 + 105*x^4 + 574*x^6 + ... = Product_{n >= 1} (1 + x^(2*n))^14 / (1 - x^(8*n))^4 = F(x^2)*A(x^8), where F(x) = Product_{n >= 1} (1 + x^n)^14 is the g.f. of A022579.
The odd bisection of the g.f. is (A(x) - A(-x))/2 = 4*x + 40*x^3 + 252*x^5 + 1240*x^7 + ... = (4*x) * Product_{n >= 1} (1 + x^(2*n))^2 * (1 - x^(8*n))^4 / (1 - x^(2*n))^8. (End)