A023008 Number of partitions of n into parts of 9 kinds.
1, 9, 54, 255, 1035, 3753, 12483, 38709, 113265, 315445, 841842, 2164185, 5382276, 12994290, 30543210, 70066809, 157199805, 345552183, 745377215, 1579915080, 3294664578, 6766656315, 13700560491, 27370137195, 53991639855, 105242612526, 202837976145
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
- P. Nataf, M. Lajkó, A. Wietek, K. Penc, F. Mila, A. M. Läuchli, Chiral spin liquids in triangular lattice SU (N) fermionic Mott insulators with artificial gauge fields, arXiv preprint arXiv:1601.00958 [cond-mat.quant-gas], 2016.
- N. J. A. Sloane, Transforms
- Index entries for expansions of Product_{k >= 1} (1-x^k)^m
Crossrefs
Cf. 9th column of A144064. - Alois P. Heinz, Oct 17 2008
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*9, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Oct 17 2008
-
Mathematica
nmax=50; CoefficientList[Series[Product[1/(1-x^k)^9,{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Feb 28 2015 *)
Formula
a(n) ~ 3^(5/2) * exp(Pi * sqrt(6*n)) / (256 * n^3). - Vaclav Kotesovec, Feb 28 2015
a(0) = 1, a(n) = (9/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 27 2017
G.f.: exp(9*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018
Comments