A023009 Number of partitions of n into parts of 10 kinds.
1, 10, 65, 330, 1430, 5512, 19415, 63570, 195910, 573430, 1605340, 4322110, 11240645, 28341730, 69488650, 166096270, 387890625, 886698670, 1987322415, 4373271870, 9461022285, 20144164040, 42254620785, 87398226990, 178396331100, 359618772656, 716409453320
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
- Index entries for expansions of Product_{k >= 1} (1-x^k)^m
- N. J. A. Sloane, Transforms
Crossrefs
Cf. 10th column of A144064. - Alois P. Heinz, Oct 17 2008
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*10, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Oct 17 2008
-
Mathematica
nmax=50; CoefficientList[Series[Product[1/(1-x^k)^10,{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Feb 28 2015 *)
Formula
G.f.: Product_{m>=1} 1/(1-x^m)^10.
a(n) ~ 5^(11/4) * exp(2 * Pi * sqrt(5*n/3)) / (64 * 3^(11/4) * n^(13/4)). - Vaclav Kotesovec, Feb 28 2015
a(0) = 1, a(n) = (10/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 27 2017
G.f.: exp(10*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018
Comments