A023010 Number of partitions of n into parts of 11 kinds.
1, 11, 77, 418, 1925, 7854, 29183, 100529, 325193, 997150, 2919411, 8207563, 22259237, 58454165, 149104450, 370410700, 898202998, 2130141651, 4949034937, 11281187225, 25262712629, 55641782779, 120661583781, 257862888360, 543532730675, 1130864017283
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for expansions of Product_{k >= 1} (1-x^k)^m
- N. J. A. Sloane, Transforms
Crossrefs
Cf. 11th column of A144064. - Alois P. Heinz, Oct 17 2008
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*11, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Oct 17 2008
-
Mathematica
nmax=50; CoefficientList[Series[Product[1/(1-x^k)^11,{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Feb 28 2015 *) CoefficientList[Series[1/QPochhammer[x]^11, {x, 0, 30}], x] (* Indranil Ghosh, Mar 27 2017 *)
-
PARI
Vec(1/eta(x)^11 + O(x^30)) \\ Indranil Ghosh, Mar 27 2017
Formula
G.f.: Product_{m>=1} 1/(1-x^m)^11.
a(n) ~ 1331 * exp(Pi * sqrt(22*n/3)) / (2^(19/2) * 27 * n^(7/2)). - Vaclav Kotesovec, Feb 28 2015
a(0) = 1, a(n) = (11/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 27 2017
G.f.: exp(11*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018
Comments