cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023010 Number of partitions of n into parts of 11 kinds.

Original entry on oeis.org

1, 11, 77, 418, 1925, 7854, 29183, 100529, 325193, 997150, 2919411, 8207563, 22259237, 58454165, 149104450, 370410700, 898202998, 2130141651, 4949034937, 11281187225, 25262712629, 55641782779, 120661583781, 257862888360, 543532730675, 1130864017283
Offset: 0

Views

Author

Keywords

Comments

a(n) is Euler transform of A010850. - Alois P. Heinz, Oct 17 2008

Crossrefs

Cf. 11th column of A144064. - Alois P. Heinz, Oct 17 2008

Programs

  • Maple
    with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*11, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Oct 17 2008
  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^k)^11,{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Feb 28 2015 *)
    CoefficientList[Series[1/QPochhammer[x]^11, {x, 0, 30}], x] (* Indranil Ghosh, Mar 27 2017 *)
  • PARI
    Vec(1/eta(x)^11 + O(x^30)) \\ Indranil Ghosh, Mar 27 2017

Formula

G.f.: Product_{m>=1} 1/(1-x^m)^11.
a(n) ~ 1331 * exp(Pi * sqrt(22*n/3)) / (2^(19/2) * 27 * n^(7/2)). - Vaclav Kotesovec, Feb 28 2015
a(0) = 1, a(n) = (11/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 27 2017
G.f.: exp(11*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018