A023012 Number of partitions of n into parts of 14 kinds.
1, 14, 119, 770, 4165, 19754, 84602, 333608, 1228080, 4263770, 14071827, 44420796, 134793918, 394805110, 1119974875, 3086034350, 8280022023, 21678277754, 55486209625, 139065013640, 341779759755, 824753397814, 1956347387428
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- N. J. A. Sloane, Transforms
- Index entries for expansions of Product_{k >= 1} (1-x^k)^m
Crossrefs
14th column of A144064. - Alois P. Heinz, Oct 17 2008
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*14, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Oct 17 2008
-
Mathematica
CoefficientList[Series[1/QPochhammer[x]^14, {x, 0, 30}], x] (* Indranil Ghosh, Mar 27 2017 *)
-
PARI
Vec(1/eta(x)^14 + O(x^30)) \\ Indranil Ghosh, Mar 27 2017
Formula
a(0) = 1, a(n) = (14/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 27 2017
a(n) ~ m^((m+1)/4) * exp(Pi*sqrt(2*m*n/3)) / (2^((3*m+5)/4) * 3^((m+1)/4) * n^((m+3)/4)) * (1 - ((9+Pi^2)*m^2+36*m+27) / (24*Pi*sqrt(6*m*n))), set m = 14. - Vaclav Kotesovec, Jun 28 2025
Comments