cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023105 Number of distinct quadratic residues mod 2^n.

Original entry on oeis.org

1, 2, 2, 3, 4, 7, 12, 23, 44, 87, 172, 343, 684, 1367, 2732, 5463, 10924, 21847, 43692, 87383, 174764, 349527, 699052, 1398103, 2796204, 5592407, 11184812, 22369623, 44739244, 89478487, 178956972, 357913943, 715827884, 1431655767, 2863311532
Offset: 0

Views

Author

Keywords

Comments

Number of distinct n-digit suffixes of base 2 squares.
a(n) counts the elements of A234000 smaller than 2^n plus the zero: a(7)=23 counts the elements of {0, 1, 4, 9, ..., 113, 121}, for example. - R. J. Mathar, Oct 11 2014
Conjecture: a(n) = 2 + (the number of A004215 entries < 2^n), for n>0. - Tilman Neumann, Sep 20 2020

Crossrefs

Programs

  • Haskell
    a 0 = 1
    a 1 = 2
    a n | even n = 2*a(n-1)-2
    a n | odd  n = 2*a(n-1)-1
    -- James Spahlinger, Oct 07 2012
    
  • Magma
    [Floor((2^n+10)/6): n in [0..30]]; // Vincenzo Librandi, Apr 21 2012
    
  • Mathematica
    CoefficientList[Series[(1-3*x^2-x^3)/((1-x)*(1+x)*(1-2*x)),{x,0,35}],x] (* Vincenzo Librandi, Apr 21 2012 *)
    LinearRecurrence[{2,1,-2},{1,2,2,3},40] (* Harvey P. Dale, Mar 05 2016 *)
  • PARI
    a(n)=(2^n+10)\6 \\ Charles R Greathouse IV, Apr 21 2012
    
  • Python
    def A023105(n): return ((1<Chai Wah Wu, Aug 22 2023
  • SageMath
    [(2^n +9 -(-1)^n -3*bool(n==0))/6 for n in (0..30)] # G. C. Greubel, Aug 10 2022
    

Formula

a(n) = floor( (2^n+10)/6 ).
a(n) = (2^n + 9 - (-1)^n)/6 for n > 0. - David S. Dodson, Jan 06 2013
G.f.: (1-3*x^2-x^3)/((1-x)*(1+x)*(1-2*x)). - Colin Barker, Mar 08 2012
a(0)=1, a(1)=2. a(n) = 2*a(n-1)-2 if n is even, a(n) = 2*a(n-1)-1 if n is odd. - Vincenzo Librandi, Apr 21 2012
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n > 0. - Joerg Arndt, Apr 21 2012
a(0)=1, a(1)=2, a(n+2) = a(n+1) + A001045(n) for n >= 1. - Lee Hae-hwang, Jun 16 2014
a(n) = A000224(2^n). - R. J. Mathar, Oct 10 2014
a(n) = A005578(n-1) + 1, n > 0. - Carl Joshua Quines, Jul 17 2019
E.g.f.: (exp(2*x) + 9*exp(x) - 3 - exp(-x))/6. - G. C. Greubel, Aug 10 2022