A023208 Primes p such that 3*p + 2 is also prime.
3, 5, 7, 13, 17, 19, 23, 29, 37, 43, 59, 79, 83, 89, 97, 103, 127, 139, 149, 163, 167, 173, 197, 199, 227, 233, 239, 257, 269, 293, 313, 317, 337, 349, 353, 367, 383, 397, 409, 419, 433, 439, 457, 479, 499, 503, 523, 569, 577, 607, 643, 659, 709, 757, 769, 797, 859, 863
Offset: 1
Links
- Zak Seidov and Michael De Vlieger, Table of n, a(n) for n = 1..10000 (first 1000 terms from _Zak Seidov_)
- Rosemary Sullivan and Neil Watling, Independent divisibility pairs on the set of integers from 1 to n, INTEGERS 13 (2013) #A65.
Crossrefs
Programs
-
Haskell
a023208 n = a023208_list !! (n-1) a023208_list = filter ((== 1) . a010051 . (+ 2) . (* 3)) a000040_list -- Reinhard Zumkeller, Aug 15 2011
-
Magma
[n: n in PrimesUpTo(900) | IsPrime(3*n+2)]; // Vincenzo Librandi, Nov 20 2010
-
Mathematica
n = 1; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a (* Artur Jasinski, Dec 12 2007 *)
-
PARI
isA023208(n) = isprime(n) && isprime(3*n+2) \\ Michael B. Porter, Jan 30 2010
Extensions
Edited by N. J. A. Sloane, May 16 2008 at the suggestion of R. J. Mathar
Comments