cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A023248 Primes that remain prime through 2 iterations of function f(x) = 3x + 8.

Original entry on oeis.org

3, 11, 13, 31, 41, 43, 53, 101, 113, 211, 223, 263, 283, 431, 433, 491, 521, 563, 571, 601, 631, 641, 673, 743, 811, 911, 1151, 1361, 1621, 1693, 1973, 2243, 2393, 3083, 3163, 3181, 3343, 3461, 3821, 3923, 4481, 4523, 4561, 4591, 4663, 4861, 4903, 5051, 5261
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 3*p+8 and 9*p+32 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023210.

Programs

  • Magma
    [n: n in [0..100000] | IsPrime(n) and IsPrime(3*n+8) and IsPrime(9*n+32)]; // Vincenzo Librandi, Aug 04 2010
  • Mathematica
    Select[Range@ 5280, Times @@ Boole@ PrimeQ@ NestList[3 # + 8 &, #, 2] > 0 &] (* Michael De Vlieger, Sep 13 2016 *)
    fQ[p_]:=AllTrue[Rest[NestList[3#+8&,p,2]],PrimeQ]; Select[Prime[Range[700]],fQ] (* Harvey P. Dale, Sep 01 2024 *)

Formula

a(n) == 1 or 3 (mod 10) for n >= 2. - John Cerkan, Sep 13 2016

A023279 Primes that remain prime through 3 iterations of function f(x) = 3x + 8.

Original entry on oeis.org

11, 31, 211, 1151, 3181, 5051, 5261, 6101, 6661, 9391, 9551, 10501, 11701, 13171, 15901, 16481, 19531, 22051, 24181, 26261, 27031, 28351, 28591, 28661, 29411, 30941, 31321, 32621, 38011, 40471, 42101, 48371, 49921, 57571, 59791, 61981, 66161, 67271
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 3*p+8, 9*p+32 and 27*p+104 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023210 and of A023248.

Programs

  • Magma
    [n: n in [1..150000] | IsPrime(n) and IsPrime(3*n+8) and IsPrime(9*n+32) and IsPrime(27*n+104)] // Vincenzo Librandi, Aug 04 2010
    
  • Mathematica
    Select[Prime@ Range@ 7000, Times @@ Boole@ PrimeQ@ Rest@ NestList[3 # + 8 &, #, 3] > 0 &] (* Michael De Vlieger, Sep 19 2016 *)
  • PARI
    is(n)=isprime(n) && isprime(3*n+8) && isprime(9*n+32) && isprime(27*n+104) \\ Charles R Greathouse IV, Sep 20 2016

Formula

a(n) == 1 (mod 10). - John Cerkan, Sep 16 2016

A023309 Primes that remain prime through 4 iterations of function f(x) = 3x + 8.

Original entry on oeis.org

3181, 9551, 22051, 30941, 32621, 61981, 76651, 99961, 134291, 151901, 163661, 185951, 226691, 227671, 240551, 288191, 342821, 374501, 394411, 402881, 423781, 426301, 446461, 456151, 459091, 460951, 554011, 572321, 577601, 617191, 653831
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 3*p+8, 9*p+32, 27*p+104 and 81*p+320 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023210, A023248, and A023279.

Programs

  • Magma
    [n: n in [1..1000000] | IsPrime(n) and IsPrime(3*n+8) and IsPrime(9*n+32) and IsPrime(27*n+104) and IsPrime(81*n+320)]; // Vincenzo Librandi, Aug 04 2010
  • Mathematica
    okQ[n_]:=And@@PrimeQ/@Rest[NestList[3#+8&,n,4]]; Select[Prime[Range[60000]],okQ] (* Harvey P. Dale, Aug 16 2010 *)

Formula

a(n) == 1 or 31 (mod 70). - John Cerkan, Oct 04 2016

A023337 Primes that remain prime through 5 iterations of function f(x) = 3x + 8.

Original entry on oeis.org

3181, 61981, 134291, 342821, 459091, 882451, 984931, 1016011, 1028471, 1181701, 1391561, 1897801, 2009311, 2272301, 2476421, 2769791, 3048041, 3085421, 3128821, 3207221, 3545111, 4092931, 4690591, 5015321, 5863651, 6027941, 6361351, 6796541
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 3*p+8, 9*p+32, 27*p+104, 81*p+320, and 243*p+968 are also primes. - Vincenzo Librandi, Aug 05 2010

Crossrefs

Subsequence of A023210, A023248, A023279, and A023309.

Programs

  • Magma
    [n: n in [1..25000000] | IsPrime(n) and IsPrime(3*n+8) and IsPrime(9*n+32) and IsPrime(27*n+104) and IsPrime(81*n+320) and IsPrime(243*n+968)] // Vincenzo Librandi, Aug 05 2010
    
  • Mathematica
    Select[Prime[Range[500000]],And@@PrimeQ[Rest[NestList[3#+8&,#,5]]]&] (* Harvey P. Dale, Apr 07 2014 *)
  • PARI
    is(n)=isprime(n) && isprime(3*n+8) && isprime(9*n+32) && isprime(27*n+104) && isprime(81*n+320) && isprime(243*n+968) \\ Charles R Greathouse IV, Oct 11 2016

Formula

a(n) == 31 (mod 70). - John Cerkan, Oct 11 2016

A230243 Number of primes p < n with 3*p + 8 and (p-1)*n + 1 both prime.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 1, 3, 1, 4, 2, 1, 4, 2, 2, 4, 2, 3, 2, 4, 3, 4, 4, 2, 2, 2, 1, 5, 3, 4, 3, 3, 2, 3, 4, 2, 2, 4, 2, 4, 4, 1, 5, 3, 2, 6, 4, 1, 5, 6, 3, 3, 5, 1, 5, 5, 2, 7, 5, 3, 4, 4, 3, 4, 6, 3, 4, 6, 4, 5, 6, 3, 7, 4, 2, 6, 1, 3, 5, 9, 3, 3, 7, 4, 3, 7, 1, 6, 5, 5, 5, 6, 3, 6, 7
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 13 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 4.
This implies A. Murthy's conjecture (cf. A034693) that for any integer n > 1, there is a positive integer k < n such that k*n + 1 is prime.
Conjecture verified for n up to 10^9. - Mauro Fiorentini, Sep 21 2023

Examples

			a(8) = 1 since 8 = 3 + 5 with 3, 3*3+8 = 17, (3-1)*8+1 = 17 all prime.
a(17) = 1 since 17 = 7 + 10, and 7, 3*7+8 = 29, (7-1)*17+1 = 103 are all prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[3Prime[i]+8]&&PrimeQ[(Prime[i]-1)n+1],1,0],{i,1,PrimePi[n-1]}]
    Table[a[n],{n,1,100}]

A352170 Primes p such that p+4, 3*p+4 and 3*p+8 are also prime.

Original entry on oeis.org

3, 13, 103, 223, 823, 2953, 7873, 11113, 11863, 13033, 13963, 16063, 22153, 23743, 24763, 27733, 30133, 31513, 34213, 35593, 39883, 41893, 43063, 50383, 51043, 54493, 62983, 65323, 66343, 68473, 71593, 72643, 87793, 88423, 98893, 101203, 106363, 110563, 127873, 134593, 136603, 158563, 164623, 165703
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Mar 07 2022

Keywords

Comments

Members p of A023200 such that 3*p+4 is also in A023200.
Except for 3, all terms == 13 (mod 30).

Examples

			a(4) = 223 is a term because 223, 223+4 = 227, 3*223+4 = 673 and 3*223+8 = 677 are all prime.
		

Crossrefs

Intersection of A023200, A023209 and A023210.

Programs

  • Maple
    select(p -> isprime(p) and isprime(p+4) and isprime(3*p+4) and isprime(3*p+8), [3,seq(i,i=13..10^6,30)]);
  • Mathematica
    Select[Range[200000], AllTrue[{#, # + 4, 3*# + 4, 3*# + 8}, PrimeQ] &] (* Amiram Eldar, Mar 07 2022 *)
  • Python
    from sympy import sieve, isprime
    for p in sieve.primerange(0, 10**6):
        if(all(isprime(q) for q in [p+4, 3*p+4, 3*p+8])):
            print (p, end=", ") # Martin Ehrenstein, Mar 09 2022
Showing 1-6 of 6 results.