cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023242 Primes that remain prime through 2 iterations of function f(x) = 2x + 3.

Original entry on oeis.org

2, 5, 7, 13, 43, 47, 67, 97, 113, 137, 167, 173, 197, 277, 307, 397, 463, 467, 557, 607, 617, 887, 1063, 1153, 1217, 1237, 1307, 1373, 1427, 1453, 1523, 1553, 1567, 1663, 1693, 2027, 2113, 2143, 2203, 2617, 2647, 2707, 2777, 2857, 2927, 3343, 3613, 3767
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2*p + 3 and 4*p + 9 are also primes. - Vincenzo Librandi, Aug 04 2010
All terms > 5 end in 3 or 7. - Robert Israel, Jun 22 2015

Programs

  • Magma
    [p: p in PrimesUpTo(10000) | IsPrime(2*p+3) and IsPrime(4*p+9)] // Vincenzo Librandi, Aug 04 2010 (simplified by Bruno Berselli)
    
  • Maple
    select(t -> isprime(t) and isprime(2*t+3) and isprime(4*t+9), [2,seq(2*i+1, i=1..10000)]); # Robert Israel, Jun 22 2015
  • Mathematica
    Select[Range[4 10^6], PrimeQ[#]&& PrimeQ[2 # + 3]&&PrimeQ[4 # + 9] &] (* Vincenzo Librandi, Jun 24 2014 *)
  • PARI
    is(n)=isprime(n) && isprime(2*n+3) && isprime(4*n+9) \\ Charles R Greathouse IV, Sep 09 2014
    
  • Sage
    # By the definition:
    def t(i): return 2*i+3
    [p for p in primes(5000) if is_prime(t(p)) and is_prime(t(t(p)))] # Bruno Berselli, Sep 09 2014