cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A176223 Natural numbers k which give a prime by the function f(k) = 2 * k + 13 for at least two iterations.

Original entry on oeis.org

2, 5, 8, 17, 23, 35, 38, 47, 50, 68, 77, 80, 107, 110, 113, 140, 152, 170, 218, 227, 233, 245, 248, 278, 287, 317, 320, 332, 353, 365, 380, 392, 407, 437, 458, 467, 485, 500, 518, 542, 575, 590, 602, 605, 623, 635, 638, 710, 740, 743, 770, 803, 827, 842
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 12 2010

Keywords

Comments

n, p = f(k) = 2 * k + 13, q = f(f(k)) = 4 * k + 39; p and q to be primes.
List of (k,p,q):
(2,17,47) (5,23,59) (8,29,71) (17,47,107) (23,59,131)
(35,83,179) (38,89,191) (47,107,227) (50,113,239) (68,149,311)
(77,167,347) (80,173,359) (107,227,467) (110,233,479) (113,239,491)
(140,293,599) (152,317,647) (170,353,719) (218,449,911) (227,467,947)
(233,479,971) (245,503,1019) (248,509,1031) (278,569,1151) (287,587,1187)
(317,647,1307) (320,653,1319) (332,677,1367) (353,719,1451) (365,743,1499)

Examples

			2 * 2 + 13 = 17 = prime(7), 4 * 2 + 39 = 47 = prime(15), 2 is first term.
2 * 5 + 13 = 23 = prime(9), 4 * 5 + 39 = 59 = prime(17), 5 is 2nd term.
		

Crossrefs

Programs

  • Mathematica
    k13Q[n_]:=AllTrue[Rest[NestList[2#+13&,n,2]],PrimeQ]; Select[Range[ 1000],k13Q] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 20 2020 *)
  • PARI
    isok(n) = isprime(p=2*n+13) && isprime(2*p+13) \\ Michel Marcus, Jun 28 2013

Extensions

More terms from Michel Marcus, Jun 28 2013

A176247 Primes p which give a prime iterated by f(p) = 2*p + 13 for at least two steps.

Original entry on oeis.org

2, 5, 17, 23, 47, 107, 113, 227, 233, 317, 353, 467, 743, 827, 1013, 1163, 1223, 1283, 1493, 1697, 1823, 1877, 2063, 2333, 2543, 2957, 3323, 3467, 3767, 3797, 4013, 4397, 4523, 5297, 5393, 5507, 5693, 5717, 5897, 5927, 6053, 6317, 6473, 6737, 6947, 6977
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 13 2010

Keywords

Comments

Subsequence of A176223.
p, f(p) = 2*p + 13, q = f(f(p)) = 4*p + 39 to be primes.
Necessarily for such primes p > 5, the LSD (least significant digit) is either 3 or 7, since an LSD of 1 gives the LSD of f(p) equal to 5 and an LSD of 9 gives the LSD of f(f(p)) equal to 5.

Examples

			f(2) = 17 = prime(7), f(17) = 47 = prime(15), 2 is first term.
f(5) = 23 = prime(9), f(23) = 59 = prime(17), 5 is 2nd term.
Note first resulting palindromic prime: f(3323) = 6659 = prime(858), q = 13331 = prime(1583) = palprime(29).
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range[10^3], AllTrue[NestList[2 # + 13 &, #, 2], PrimeQ] &] (* Michael De Vlieger, Mar 14 2020 *)
  • PARI
    isok(n) = isprime(n) && isprime(p=2*n+13) && isprime(2*p+13) \\ Michel Marcus, Jun 28 2013

Extensions

More terms from Michel Marcus, Jun 28 2013

A176619 Primes p such that 2p + 3, 4p + 9, 3p + 2 and 9p + 8 are also primes.

Original entry on oeis.org

5, 7, 97, 167, 397, 607, 2617, 2707, 7687, 12097, 14407, 16787, 19577, 22307, 23827, 24967, 25717, 28547, 31687, 43037, 43517, 46817, 58967, 59617, 63607, 70237, 70957, 78517, 85027, 96797
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 22 2010

Keywords

Comments

These primes stay prime under two iterations of p->2p+3 as well as under two iterations of p->3p+2.
For all entries >5 the least significant digit is 7.

Examples

			2*5 + 3 = 13 = prime(6),
4*5 + 9 = 29 = prime(10),
3*5 + 2 = 17 = prime(7),
9*5 + 8 = 53 = prime(16); 5 = prime(3) = a(1).
		

References

  • Joe Buhler: Algorithmic Number Theory: Third International Symposium, ANTS-III, Springer New York, 1998
  • F. Ischebeck: Einladung zur Zahlentheorie, B. I. Wissenschaftsverlag, Mannheim-Leipzig-Wien-Zuerich, 1992

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(100000)|IsPrime(2*p+3) and IsPrime(4*p+9) and IsPrime(3*p+2) and IsPrime(9*p+8 )] // Vincenzo Librandi, Jan 29 2011
  • Mathematica
    Select[Prime[Range[10000]],AllTrue[{2#+3,4#+9,3#+2,9#+8},PrimeQ]&] (* Harvey P. Dale, Dec 15 2024 *)

Formula

A023242 INTERSECT A023246.

A247010 Primes p such that (p-3)/2 and 2*p+3 are both prime.

Original entry on oeis.org

7, 13, 17, 29, 89, 97, 137, 197, 229, 277, 337, 349, 397, 557, 617, 797, 929, 937, 1117, 1217, 1237, 1777, 2129, 2309, 2437, 2477, 2617, 2749, 2857, 2909, 3049, 3109, 3137, 3329, 3389, 4057, 4229, 4289, 4409, 5237, 5297, 5417, 5557, 5717, 5857, 6689
Offset: 1

Views

Author

Vincenzo Librandi, Sep 09 2014

Keywords

Comments

A023204 INTERSECT A089531. After 7, all terms are obviously in A002144.
Conjecture: the sequence is infinite.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(7000) | IsPrime((p-3)div 2) and IsPrime(2*p+3)];
    
  • Mathematica
    Select[Prime[Range[900]], And@@PrimeQ/@{(# - 3)/2, 2 # + 3} &]
  • PARI
    is(n)=isprime(n) && isprime(2*n+3) && isprime((n-3)\2) \\ Charles R Greathouse IV, Sep 09 2014
  • Sage
    def t(i): return 2*i+3
    [t(p) for p in primes(5000) if is_prime(t(p)) and is_prime(t(t(p)))] # Bruno Berselli, Sep 09 2014
    

Formula

a(n) = 2*A023242(n) + 3. [Bruno Berselli, Sep 09 2014]

A244086 Primes p such that p remains prime through 7 iterations of function f(x) = 2*x + 3.

Original entry on oeis.org

477727, 507757, 30596497, 33145687, 36180527, 61192997, 141339217, 148590307, 193394347, 297180617, 374066267, 395534747, 398001547, 419795137, 488716897
Offset: 1

Views

Author

Vincenzo Librandi, Jun 24 2014

Keywords

Crossrefs

Cf. similar sequences with k iterations: A067076 (k=1), A023242 (k=2), A023273 (k=3), A023303 (k=4), A023331 (k=5), A175160 (k=6), this sequence (k=7).

Programs

  • Magma
    [p: p in PrimesUpTo(600000000) | forall{i: i in [1..7] | IsPrime(2^i*p+3*(2^i-1))}];
  • Mathematica
    Select[Prime[Range[600000]], And@@PrimeQ[NestList[2 # + 3 &, #, 7]] &]

Extensions

Inappropriate MAGMA code simplified and other terms added from Bruno Berselli, Jun 24 2014
Showing 1-5 of 5 results.