cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A023307 Primes that remain prime through 4 iterations of function f(x) = 3x + 2.

Original entry on oeis.org

1129, 10009, 11489, 12539, 13859, 30029, 63079, 77359, 99119, 121039, 124669, 169409, 194749, 205589, 246329, 330329, 349519, 351829, 354839, 361279, 369539, 384589, 395719, 399769, 416989, 429109, 446819, 527599, 532489, 544259, 575119
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 3*p+2, 9*p+8, 27*p+26, and 81*p+80 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023208, A023246, A023277, and A024893.

Programs

  • Magma
    [n: n in [1..1000000] | IsPrime(n) and IsPrime(3*n+2) and IsPrime(9*n+8) and IsPrime(27*n+26) and IsPrime(81*n+80)] // Vincenzo Librandi, Aug 04 2010
  • Mathematica
    Select[Prime[Range[50000]],AllTrue[Rest[NestList[3#+2&,#,4]],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 13 2015 *)

Formula

a(n) == 9 or 69 (mod 70). - John Cerkan, Oct 04 2016

A176619 Primes p such that 2p + 3, 4p + 9, 3p + 2 and 9p + 8 are also primes.

Original entry on oeis.org

5, 7, 97, 167, 397, 607, 2617, 2707, 7687, 12097, 14407, 16787, 19577, 22307, 23827, 24967, 25717, 28547, 31687, 43037, 43517, 46817, 58967, 59617, 63607, 70237, 70957, 78517, 85027, 96797
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 22 2010

Keywords

Comments

These primes stay prime under two iterations of p->2p+3 as well as under two iterations of p->3p+2.
For all entries >5 the least significant digit is 7.

Examples

			2*5 + 3 = 13 = prime(6),
4*5 + 9 = 29 = prime(10),
3*5 + 2 = 17 = prime(7),
9*5 + 8 = 53 = prime(16); 5 = prime(3) = a(1).
		

References

  • Joe Buhler: Algorithmic Number Theory: Third International Symposium, ANTS-III, Springer New York, 1998
  • F. Ischebeck: Einladung zur Zahlentheorie, B. I. Wissenschaftsverlag, Mannheim-Leipzig-Wien-Zuerich, 1992

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(100000)|IsPrime(2*p+3) and IsPrime(4*p+9) and IsPrime(3*p+2) and IsPrime(9*p+8 )] // Vincenzo Librandi, Jan 29 2011
  • Mathematica
    Select[Prime[Range[10000]],AllTrue[{2#+3,4#+9,3#+2,9#+8},PrimeQ]&] (* Harvey P. Dale, Dec 15 2024 *)

Formula

A023242 INTERSECT A023246.
Showing 1-2 of 2 results.