cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023308 Primes that remain prime through 4 iterations of the function f(x) = 3x + 4.

Original entry on oeis.org

3203, 21683, 34613, 52813, 103843, 116933, 117443, 165443, 172933, 193603, 195053, 213973, 226783, 321053, 322193, 357613, 360323, 362233, 363403, 368743, 472393, 474143, 496333, 518543, 528673, 569083, 571303, 631853, 654623, 714893, 758503
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 3*p+4, 9*p+16, 27*p+52 and 81*p+160 are also primes. - Vincenzo Librandi, Aug 04 2010
All a(n) == 33 or 53 (mod 70). - John Cerkan, Oct 04 2016

Crossrefs

Subsequence of A023209, A023247, A023278, and A034936.

Programs

  • GAP
    Filtered([1..760000],n->IsPrime(n) and IsPrime(3*n+4) and IsPrime(9*n+16) and IsPrime(27*n+52) and IsPrime(81*n+160)); # Muniru A Asiru, Dec 07 2018
  • Magma
    [n: n in [1..1000000] | IsPrime(n) and IsPrime(3*n+4) and IsPrime(9*n+16) and IsPrime(27*n+52) and IsPrime(81*n+160)] // Vincenzo Librandi, Aug 04 2010
    
  • Maple
    select(n->isprime(n) and isprime(3*n+4) and isprime(9*n+16) and isprime(27*n+52) and isprime(81*n+160),[$1..760000]); # Muniru A Asiru, Dec 07 2018
  • Mathematica
    Select[Prime[Range[10000]], Union[PrimeQ[NestList[(3# + 4 &), #, 4]]] == {True} &] (* Alonso del Arte, Nov 30 2018 *)
  • PARI
    is(n) = my(x=3*n+4, i=0); while(1, if(!ispseudoprime(x), return(0), i++); if(i==4, return(1)); x=3*x+4)
    forprime(p=1, 760000, if(is(p), print1(p, ", "))) \\ Felix Fröhlich, Dec 07 2018