cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A024326 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023531, t = A023533.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 120;
    A023533:= A023533 = With[{ms= Table[m(m+1)(m+2)/6, {m, 0, nmax+5}]}, Table[If[MemberQ[ms, n], 1, 0], {n, 0, nmax+5}]];
    AbsoluteTiming[Table[t=0; m=3; p=BitShiftRight[n]; n--; While[n>p, t += A023533[[n + 1]]; n -= m++]; t, {n, nmax}]] (* G. C. Greubel, Jan 29 2022  *)
  • Sage
    nmax=120
    @CachedFunction
    def A023531(n):
        if ((sqrt(8*n+9) -3)/2).is_integer(): return 1
        else: return 0
    @CachedFunction
    def B_list(N):
        A = []
        for m in range(ceil((6*N)^(1/3))):
            A.extend([0]*(binomial(m+2, 3) -len(A)) +[1])
        return A
    A023533 = B_list(nmax+5)
    @CachedFunction
    def A023324(n): return sum( A023531(j)*A023533[n-j+1] for j in (1..((n+1)//2)) )
    [A023324(n) for n in (1..nmax)] # G. C. Greubel, Jan 29 2022

Formula

a(n) = Sum_{j=1..floor((n+1)/2)} A023531(j)*A023533(n-j+1).

A023352 Primes that remain prime through 5 iterations of function f(x) = 9x + 2.

Original entry on oeis.org

103, 283, 929, 3931, 7759, 52973, 75853, 90031, 93371, 103561, 106949, 110821, 128111, 130841, 137273, 163861, 198553, 288023, 342389, 357031, 377231, 425681, 429973, 435181, 450311, 490663, 526159, 532199, 552791, 574801, 585733, 599719
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 9*p+2, 81*p+20, 729*p+182, 6561*p+1640 and 59049*p+14762 are also primes. - Vincenzo Librandi, Aug 05 2010

Crossrefs

Subsequence of A023233, A023265, A023296, and A023324.

Programs

  • Magma
    [n: n in [1..19000000] | IsPrime(n) and IsPrime(9*n+2) and IsPrime(81*n+20) and IsPrime(729*n+182) and IsPrime(6561*n+1640) and IsPrime(59049*n+14762)] // Vincenzo Librandi, Aug 05 2010
  • Mathematica
    Select[Prime[Range[50000]],AllTrue[Rest[NestList[9#+2&,#,5]],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 24 2017 *)
Showing 1-2 of 2 results.