cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A024325 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023531, t = A001950 (upper Wythoff sequence).

Original entry on oeis.org

0, 0, 5, 7, 10, 13, 15, 18, 33, 38, 44, 48, 54, 60, 64, 70, 98, 106, 114, 121, 130, 137, 145, 153, 160, 169, 213, 223, 233, 244, 255, 265, 275, 286, 297, 307, 317, 328, 391, 403, 416, 430, 442, 456, 469, 481, 496, 508, 521, 534, 547, 561, 644, 659, 675, 690, 707, 722, 737, 755
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A023531:= func< n | IsIntegral( (Sqrt(8*n+9) -3)/2 ) select 1 else 0 >;
    A024325:= func< n | (&+[A023531(j)*Floor((n-j+1)*(3+Sqrt(5))/2): j in [1..Floor((n+1)/2)]]) >;
    [A024325(n) : n in [1..80]]; // G. C. Greubel, Jan 28 2022
    
  • Mathematica
    A023531[n_] := SquaresR[1, 8n+9]/2;
    a[n_]:= a[n]= Sum[A023531[j]*Floor[(n-j+1)*GoldenRatio^2], {j,Floor[(n+1)/2]}];
    Table[a[n], {n, 80}] (* G. C. Greubel, Jan 28 2022 *)
  • Sage
    def A023531(n):
        if ((sqrt(8*n+9) -3)/2).is_integer(): return 1
        else: return 0
    def A023325(n): return sum( A023531(j)*floor(((n-j+1)*(3+sqrt(5)))/2) for j in (1..((n+1)//2)) )
    [A023325(n) for n in (1..80)] # G. C. Greubel, Jan 28 2022

Formula

a(n) = Sum_{j=1..floor((n+1)/2)} A023531(j)*A001950(n-j+1).

A023353 Primes that remain prime through 5 iterations of the function f(x) = 9x + 4.

Original entry on oeis.org

421, 773, 1567, 4111, 68447, 75721, 111373, 127301, 137927, 140321, 156593, 170767, 177131, 192341, 194687, 202637, 240641, 254407, 254963, 308303, 321821, 332951, 395431, 464131, 515663, 710081, 822893, 856393, 989533, 997123, 1012201, 1047077
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 9*p+4, 81*p+40, 729*p+364, 6561*p+3280 and 59049*p+29524 are also primes. - Vincenzo Librandi, Aug 05 2010

Crossrefs

Subsequence of A023234, A023266, A023297, and A023325.

Programs

  • Magma
    [n: n in [1..19000000] | IsPrime(n) and IsPrime(9*n+4) and IsPrime(81*n+40) and IsPrime(729*n+364) and IsPrime(6561*n+3280) and IsPrime(59049*n+29524)] // Vincenzo Librandi, Aug 05 2010
  • Mathematica
    okQ[n_]:=And@@PrimeQ/@Rest[NestList[9#+4&,n,5]]; Select[Prime[Range[100000]],okQ]  (* Harvey P. Dale, Jan 29 2011 *)
Showing 1-2 of 2 results.