A023360 Number of compositions of n into prime parts.
1, 0, 1, 1, 1, 3, 2, 6, 6, 10, 16, 20, 35, 46, 72, 105, 152, 232, 332, 501, 732, 1081, 1604, 2352, 3493, 5136, 7595, 11212, 16534, 24442, 36039, 53243, 78573, 115989, 171264, 252754, 373214, 550863, 813251, 1200554, 1772207, 2616338, 3862121, 5701553
Offset: 0
Keywords
Examples
2; 3; 4 = 2+2; 5 = 2+3 = 3+2; 6 = 2+2+2 = 3+3; 7 = 2+2+3 = 2+3+2 = 3+2+2 = 2+5 = 5+2; etc.
References
- S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 292-295.
- Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000 (first 501 terms from T. D. Noe)
- S. R. Finch, Kalmar's composition constant, June 5, 2003. [Cached copy, with permission of the author]
- Philippe Flajolet, More information including asymptotic form (1995). [Broken link]
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 43, 298
Crossrefs
Cf. A000607 for the unordered (partition) version.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add( `if`(isprime(j), a(n-j), 0), j=1..n)) end: seq(a(n), n=0..50); # Alois P. Heinz, Feb 12 2021
-
Mathematica
CoefficientList[ Series[1 / (1 - Sum[ x^Prime[i], {i, 15}]), {x, 0, 45}], x]
-
PARI
{my(n=60); Vec(1/(1-sum(k=1, n, if(isprime(k), x^k, 0))) + O(x*x^n))} \\ Andrew Howroyd, Dec 28 2017
Formula
a(n) = Sum_{prime p<=n} a(n-p) with a(0)=1. - Henry Bottomley, Dec 15 2000
G.f.: 1/(1 - Sum_{k>=1} x^A000040(k)). - Andrew Howroyd, Dec 28 2017