cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023360 Number of compositions of n into prime parts.

Original entry on oeis.org

1, 0, 1, 1, 1, 3, 2, 6, 6, 10, 16, 20, 35, 46, 72, 105, 152, 232, 332, 501, 732, 1081, 1604, 2352, 3493, 5136, 7595, 11212, 16534, 24442, 36039, 53243, 78573, 115989, 171264, 252754, 373214, 550863, 813251, 1200554, 1772207, 2616338, 3862121, 5701553
Offset: 0

Views

Author

Keywords

Examples

			2; 3; 4 = 2+2; 5 = 2+3 = 3+2; 6 = 2+2+2 = 3+3; 7 = 2+2+3 = 2+3+2 = 3+2+2 = 2+5 = 5+2; etc.
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 292-295.
  • Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.

Crossrefs

Cf. A000607 for the unordered (partition) version.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
         `if`(isprime(j), a(n-j), 0), j=1..n))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 12 2021
  • Mathematica
    CoefficientList[ Series[1 / (1 - Sum[ x^Prime[i], {i, 15}]), {x, 0, 45}], x]
  • PARI
    {my(n=60); Vec(1/(1-sum(k=1, n, if(isprime(k), x^k, 0))) + O(x*x^n))} \\ Andrew Howroyd, Dec 28 2017

Formula

a(n) = Sum_{prime p<=n} a(n-p) with a(0)=1. - Henry Bottomley, Dec 15 2000
G.f.: 1/(1 - Sum_{k>=1} x^A000040(k)). - Andrew Howroyd, Dec 28 2017