A265112 a(n) = A023360(A000040(n)): number of compositions of prime(n) into prime parts.
1, 1, 3, 6, 20, 46, 232, 501, 2352, 24442, 53243, 550863, 2616338, 5701553, 27077005, 280237217, 2900328380, 6320545915, 65414893802, 310664269401, 677015556295, 7006815193063, 33276323565116, 344395408399372, 7767597342090622, 36889382062795742
Offset: 1
Examples
prime(4) = 7; a(4) = A023360(7) = 6 because there are 6 compositions of 7 into prime parts {2,3,5,7}: {7}, {5+2}, {3+2+2}, {2+5}, {2+3+2} and {2+2+3}.
Links
- Robert Israel, Table of n, a(n) for n = 1..768
Programs
-
Maple
N:= 1000: # to get a(1) to a(A000720(N)) Primes:= select(isprime, [2,seq(i,i=3..N,2)]): M:= nops(Primes); F:= proc(x) option remember; local k; add(procname(x-Primes[k]),k=1..numtheory:-pi(x)); end proc: F(0):= 1: seq(F(Primes[n]),n=1..M); # Robert Israel, Dec 02 2015
-
Mathematica
Needs["Combinatorica`"]; Table[Length@ Flatten[Permutations[#, {Length@ #}] & /@ Select[Combinatorica`Partitions@ Prime@ n, AllTrue[#, PrimeQ] &], 1], {n, 14}] (* Version 10, slow, or *) lim = 101; t = Rest@ CoefficientList[Series[1/(1 - Sum[x^Prime[i], {i, 1, PrimePi@ lim}]), {x, 0, lim}], x]; t[[#]] &@ Prime@ Range@ PrimePi@ lim (* Michael De Vlieger, Dec 01 2015, after David W. Wilson at A023360 *)
Comments