cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023436 Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-6).

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 12, 19, 29, 45, 69, 106, 163, 250, 384, 589, 904, 1387, 2128, 3265, 5009, 7685, 11790, 18088, 27750, 42573, 65314, 100202, 153726, 235840, 361816, 555083, 851585, 1306466, 2004325, 3074951
Offset: 0

Views

Author

Keywords

Comments

Diagonal sums of the Riordan array (1/(1-x),x(1+x+x^2+x^3)) yield a(n+1). - Paul Barry, May 10 2005

Programs

  • Maple
    f:= gfun:-rectoproc({a(n)=a(n-1) + a(n-2) - a(n-6), seq(a(i)=0,i=-4..0),a(1)=1},a(n),'remember'):
    seq(f(n),n=0..50); # Robert Israel, Dec 29 2014
  • Mathematica
    a=b=c=d=e=0;f=1;lst={e,f};Do[g=e+f-a;AppendTo[lst,g];a=b;b=c;c=d;d=e;e=f;f=g,{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 30 2009 *)
    LinearRecurrence[{1,1,0,0,0,-1},{0,1,1,2,3,5},40] (* Harvey P. Dale, Dec 21 2014 *)

Formula

G.f.: x/(1 - x - x^2 + x^6) = x/((1 - x)(1 - x^2 - x^3 - x^4 - x^5)). - Paul Barry, May 10 2005