cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A107065 Riordan array (1/(1-x),x(1+x+x^2+x^3)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 4, 10, 10, 5, 1, 1, 4, 13, 20, 15, 6, 1, 1, 4, 15, 32, 35, 21, 7, 1, 1, 4, 16, 44, 66, 56, 28, 8, 1, 1, 4, 16, 54, 106, 121, 84, 36, 9, 1, 1, 4, 16, 60, 150, 222, 204, 120, 45, 10, 1, 1, 4, 16, 63, 190, 357, 420, 323, 165, 55, 11, 1, 1, 4, 16
Offset: 0

Views

Author

Paul Barry, May 10 2005

Keywords

Comments

Row sums are A107066. Diagonal sums are A023436(n+1).

Examples

			Triangle begins
  1;
  1, 1;
  1, 2, 1;
  1, 3, 3, 1;
  1, 4, 6, 4, 1;
  1, 4, 10, 10, 5, 1;
  1, 4, 13, 20, 15, 6, 1;
  ...
		

Crossrefs

A171997 a(n) = a(n-1) + a(n-2) - floor(a(n-2)/2) - floor(a(n-5)/2); initial terms are 1, 1, 2, 3, 4.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 10, 13, 16, 20, 24, 29, 35, 42, 50, 59, 70, 83, 97, 114, 134, 156, 182, 212, 246, 285, 330, 382, 441, 509, 588, 678, 781, 900, 1037, 1193, 1373, 1580, 1817, 2089, 2402, 2761, 3172, 3645, 4187, 4809, 5523, 6342, 7282, 8360
Offset: 1

Views

Author

Roger L. Bagula, Nov 22 2010

Keywords

Comments

lim_{n -> infinity} a(n+1)/a(n) = 1.14710876512065387719410850648860644150605499412513....
a(n) = A062435(n+2) for n < 15.

Crossrefs

Cf. A062435 (integer part of log(n!)^log(log(1 + n))), A023434 (a(n)=a(n-1)+a(n-2)-a(n-4)), A023435 (a(n)=a(n-1)+a(n-2)-a(n-5)), A023436 (a(n)=a(n-1)+a(n-2)-a(n-6)), A023437 (a(n)=a(n-1)+a(n-2)-a(n-7)), A023438 (a(n)=a(n-1)+a(n-2)-a(n-8)), A023439 (a(n)=a(n-1)+a(n-2)-a(n-9)), A023440 (a(n)=a(n-1)+a(n-2)+a(n-10)), A023441 (a(n)=a(n-1)+a(n-2)-a(n-11)), A023442 (a(n)=a(n-1)+a(n-2)-a(n-12)), A000044 (a(n)=a(n-1)+a(n-2)-a(n-13)), A173199 (a(n)=a(n-1)+a(n-2)-floor(a(n-3)/2)-floor(a(n-8)/2)).

Programs

  • Magma
    I:=[1,1,2,3,4]; [n le 5 select I[n] else Self(n-1) + Self(n-2) - Floor(Self(n-2)/2) - Floor(Self(n-5)/2): n in [1..60]]; // Vincenzo Librandi, Jun 24 2015
  • Mathematica
    f[-3] = 0; f[-2] = 0; f[-1] = 0; f[0] = 1; f[1] = 1;
    f[n_] := f[n] = f[n - 1] + f[n - 2] - Floor[f[n - 2]/2] - Floor[f[n - 5]/2]
    Table[f[n], {n, 0, 50}]

Extensions

Offset changed from 0 to 1 by Klaus Brockhaus, Nov 29 2010
Showing 1-2 of 2 results.