A023503 Greatest prime divisor of prime(n) - 1.
2, 2, 3, 5, 3, 2, 3, 11, 7, 5, 3, 5, 7, 23, 13, 29, 5, 11, 7, 3, 13, 41, 11, 3, 5, 17, 53, 3, 7, 7, 13, 17, 23, 37, 5, 13, 3, 83, 43, 89, 5, 19, 3, 7, 11, 7, 37, 113, 19, 29, 17, 5, 5, 2, 131, 67, 5, 23, 7, 47, 73, 17, 31, 13, 79, 11, 7, 173, 29, 11, 179, 61, 31, 7, 191
Offset: 2
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 2..10000
- R. C. Baker and G. Harman, The Brun-Titchmarsh theorem on average, Analytic Number Theory (Proceedings in honor of Heini Halberstam), Birkhäuser, Boston, 1996, pp. 39-103.
- R. Baker and G. Harman, Shifted primes without large prime factors, Acta Arithmetica 83 (1998), pp. 331-361.
- Étienne Fouvry, Théorème de Brun-Titchmarsh; application au théorème de Fermat, Invent. Math 79 (1985), 383-407.
- D. M. Goldfeld, On the number of primes p for which p + a has a large prime factor, Mathematika 16 (1969), pp. 23-27.
- R. R. Hall, Some properties of the sequence {p-1}, Acta Arith. 28 (1975/76), 101-105.
- G. Harman, On the greatest prime factor of p-1 with effective constants
Programs
-
Maple
A023503 := proc(n) A006530(ithprime(n)-1) ; end proc: seq( A023503(n),n=2..80) ; # R. J. Mathar, Sep 07 2016
-
Mathematica
Table[FactorInteger[Prime[n] - 1][[-1, 1]], {n, 2, 100}] (* T. D. Noe, Jun 08 2011 *)
-
PARI
a(n) = vecmax(factor(prime(n)-1)[,1]); \\ Michel Marcus, Aug 15 2015
Formula
Extensions
Comments, references, and links from Charles R Greathouse IV, Mar 04 2011
Comments