A024317 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023531, t = A023532.
0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 3, 3, 2, 2, 3, 2, 3, 3, 3, 2, 4, 4, 3, 4, 3, 4, 3, 3, 4, 4, 3, 4, 5, 5, 4, 5, 4, 4, 5, 3, 5, 5, 5, 4, 5, 5, 5, 6, 5, 5, 6, 6, 5, 5, 5, 6, 6, 5, 5, 6, 5, 6, 7, 7, 5, 7, 7, 7, 7, 4, 7, 6, 6, 7, 7, 6, 6, 7, 7, 7, 8, 7, 6, 8, 8, 7, 8, 7, 7, 7, 7, 8, 8, 8, 6, 8, 7, 8, 8, 7, 8, 9, 8, 8
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
A023531:= func< n | IsIntegral( (Sqrt(8*n+9) -3)/2 ) select 1 else 0 >; [ (&+[A023531(j)*(1 - A023531(n-j+1)): j in [1..Floor((n+1)/2)]]) : n in [1..90]]; // G. C. Greubel, Jan 19 2022
-
Mathematica
A023531[n_]:= SquaresR[1, 8n+9]/2; a[n_]:= Sum[A023531[j]*(1 - A023531[n-j+1]), {j, Floor[(n+1)/2]}]; Table[a[n], {n, 90}] (* G. C. Greubel, Jan 19 2022 *)
-
Sage
def A023531(n): if ((sqrt(8*n+9) -3)/2).is_integer(): return 1 else: return 0 [sum( A023531(j)*(1-A023531(n-j+1)) for j in (1..floor((n+1)/2)) ) for n in (1..90)] # G. C. Greubel, Jan 19 2022
Comments