cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 56 results. Next

A024317 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023531, t = A023532.

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 3, 3, 2, 2, 3, 2, 3, 3, 3, 2, 4, 4, 3, 4, 3, 4, 3, 3, 4, 4, 3, 4, 5, 5, 4, 5, 4, 4, 5, 3, 5, 5, 5, 4, 5, 5, 5, 6, 5, 5, 6, 6, 5, 5, 5, 6, 6, 5, 5, 6, 5, 6, 7, 7, 5, 7, 7, 7, 7, 4, 7, 6, 6, 7, 7, 6, 6, 7, 7, 7, 8, 7, 6, 8, 8, 7, 8, 7, 7, 7, 7, 8, 8, 8, 6, 8, 7, 8, 8, 7, 8, 9, 8, 8
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A023531:= func< n | IsIntegral( (Sqrt(8*n+9) -3)/2 ) select 1 else 0 >;
    [ (&+[A023531(j)*(1 - A023531(n-j+1)): j in [1..Floor((n+1)/2)]]) : n in [1..90]]; // G. C. Greubel, Jan 19 2022
    
  • Mathematica
    A023531[n_]:= SquaresR[1, 8n+9]/2;
    a[n_]:= Sum[A023531[j]*(1 - A023531[n-j+1]), {j, Floor[(n+1)/2]}];
    Table[a[n], {n, 90}] (* G. C. Greubel, Jan 19 2022 *)
  • Sage
    def A023531(n):
        if ((sqrt(8*n+9) -3)/2).is_integer(): return 1
        else: return 0
    [sum( A023531(j)*(1-A023531(n-j+1)) for j in (1..floor((n+1)/2)) ) for n in (1..90)] # G. C. Greubel, Jan 19 2022

Formula

a(n) = Sum_{k=1..floor((n+1)/2)} A023531(k)*A023532(n-k+1). - G. C. Greubel, Jan 19 2022

A024314 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = (natural numbers >= 3), t = A023532.

Original entry on oeis.org

3, 9, 24, 37, 81, 133, 256, 413, 746, 1208, 2098, 3394, 5753, 9309, 15532, 25131, 41499, 67147, 110122, 178181, 290890, 470670, 766068, 1239524, 2013407, 3257761, 5284656, 8550753
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( x*(3+6*x+6*x^2-8*x^3-7*x^4+x^5-4*x^6+2*x^7)/((1-x-x^2)*(1-x^2-x^4)^2) )); // G. C. Greubel, Jan 17 2022
    
  • Mathematica
    a[n_]:= With[{F=Fibonacci}, 6*F[n+3] +F[n+1] - (1/2)*((1+(-1)^n)*(((n+2)/2 )*LucasL[(n+4)/2] + 5*F[(n+6)/2]) - (1-(-1)^n)*(((n+3)/2)*LucasL[(n+3)/2] +5*F[(n+5)/2] ))];
    Table[a[n], {n, 40}] (* G. C. Greubel, Jan 17 2022 *)
  • Sage
    def A024314_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(3+6*x+6*x^2-8*x^3-7*x^4+x^5-4*x^6+2*x^7)/((1-x-x^2)*(1-x^2-x^4)^2) ).list()
    a=A024314_list(41); a[1:] # G. C. Greubel, Jan 17 2022

Formula

G.f.: x*(3 + 6*x + 6*x^2 - 8*x^3 - 7*x^4 + x^5 - 4*x^6 + 2*x^7)/((1 - x - x^2)*(1 - x^2 - x^4)^2). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
From G. C. Greubel, Jan 17 2022: (Start)
a(2*n) = 6*F(2*n+3) + F(2*n+1) - (n+6)*F(n+3) - (n+1)*F(n+1).
a(2*n+1) = 6*F(2*n+2) + F(2*n) - (n+6)*F(n+2) - (n+1)*F(n), where F(n) = A000045(n). (End)

A023536 Convolution of natural numbers with A023532.

Original entry on oeis.org

1, 2, 4, 7, 10, 14, 19, 25, 31, 38, 46, 55, 65, 75, 86, 98, 111, 125, 140, 155, 171, 188, 206, 225, 245, 266, 287, 309, 332, 356, 381, 407, 434, 462, 490, 519, 549, 580, 612, 645, 679, 714, 750, 786, 823, 861, 900, 940, 981, 1023, 1066, 1110, 1155
Offset: 1

Views

Author

Keywords

Comments

From Vladimir Letsko, Dec 18 2016: (Start)
Also, a(n) is the number of possible values for the number of diagonals in a convex polyhedron with n+3 vertices.
Let v>4 denote the number of vertices of convex polyhedra. The set of possible numbers of diagonals is the union of sets {(k-1)(v-k-4), ..., (k-1)(v-(k+6)/2)}, where 1 <= k <= floor((sqrt(8v-15)-5)/2), and the set {(k-1)(v-k-4), ..., (v-3)(v-4)/2}, where k = floor((sqrt(8v-15)-3)/2). Note that cardinalities of all sets of this union excluding the last one are consecutive triangular numbers. (End)

Crossrefs

Programs

  • Mathematica
    A023536[n_] := n*(n + 5)/2 - 2 - Sum[Round[Sqrt[2*k + 4]], {k, 2, n}];
    Array[A023536, 60] (* Paolo Xausa, Feb 28 2025 *)
  • Python
    from math import comb, isqrt
    def A023536(n): return comb(n+2,2)-sum(isqrt((k<<3)+1)-1>>1 for k in range(1,n+2)) # Chai Wah Wu, Feb 27 2025

Formula

a(n) = (n(n + 5) - 4 )/2 - Sum_{k=2..n} floor(1/2 + sqrt(2(k + 2))). - Jan Hagberg (jan.hagberg(AT)stat.su.se), Oct 16 2002
From Paul Barry, May 24 2004: (Start)
a(n) = (n+1)(n+2)/2 - Sum_{k=1..n+1} floor((sqrt(8k+1)-1)/2);
a(n) = Sum_{k=1..n+1} k-floor((sqrt(8k+1)-1)/2). (End)

Extensions

Corrected by Jan Hagberg (jan.hagberg(AT)stat.su.se), Oct 16 2002

A025075 a(n) = s(1)*t(n+1) + s(2)*t(n) + ... + s(k)*t(n-k+2), where k = floor((n+1)/2), s = A023532, t = A023533.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 2, 2, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n)= Sum{k=1..floor((n+1)/2)} A023532(k) * A023533(n-k+2).

A023604 Convolution of A023532 and A023533.

Original entry on oeis.org

1, 0, 1, 2, 0, 2, 2, 1, 1, 3, 2, 2, 3, 1, 3, 3, 2, 2, 3, 3, 3, 4, 2, 3, 4, 4, 3, 3, 3, 3, 4, 4, 3, 4, 4, 3, 5, 4, 3, 5, 5, 5, 4, 3, 5, 4, 4, 4, 5, 5, 5, 5, 4, 2, 5, 6, 4, 6, 6, 5, 5, 6, 4, 5, 5, 6, 6, 5, 4, 6, 6, 6, 5, 5, 5, 6, 5, 5, 6, 5, 6, 5, 6, 6, 6, 6, 7, 5, 7, 5
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A023532:= func< n | IsIntegral((Sqrt(8*n+9) - 3)/2) select 0 else 1 >;
    A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
    [(&+[A023533(k)*A023532(n+1-k): k in [1..n]]): n in [1..100]]; // G. C. Greubel, Jul 16 2022
    
  • Mathematica
    A023533[n_]:= If[Binomial[Floor[Surd[6*n-1, 3]] +2, 3] != n, 0, 1];
    A023531[n_]:= If[IntegerQ[(Sqrt[8*n+9] -3)/2], 1, 0];
    A023604[n_]:= A023604[n]= Sum[A023533[k]*(1-A023531[n-k+1]), {k,n}];
    Table[A023604[n], {n,100}] (* G. C. Greubel, Jul 16 2022 *)
  • SageMath
    def A023532(n): return 0 if ((sqrt(8*n+9) -3)/2).is_integer() else 1
    @CachedFunction
    def A023533(n): return 0 if (binomial( floor( (6*n-1)^(1/3) ) +2, 3) != n) else 1
    [sum(A023533(k)*A023532(n-k+1) for k in (1..n)) for n in (1..100)] # G. C. Greubel, Jul 16 2022

Formula

From G. C. Greubel, Jul 16 2022: (Start)
a(n) = Sum_{j=1..n} A023532(n-j+1) * A023533(j).
a(n) = Sum_{j=1..n} (1 - A023531(n-j+1)) * A023533(j). (End)

A023859 a(n) = 1*t(n) + 2*t(n-1) + ... + k*t(n+1-k), where k=floor((n+1)/2), and t = A023532.

Original entry on oeis.org

1, 0, 1, 3, 5, 4, 7, 6, 9, 13, 18, 17, 23, 21, 27, 25, 32, 40, 49, 47, 56, 54, 64, 62, 73, 71, 82, 94, 107, 105, 119, 117, 132, 130, 145, 142, 158, 155, 172, 190, 209, 207, 227, 224, 244, 241, 262, 259, 281, 278, 301, 298, 322, 346, 371, 368, 394, 391, 418, 415, 443, 440, 469, 466
Offset: 1

Views

Author

Keywords

Programs

  • Mathematica
    Array[Sum[k Boole@ Not@ IntegerQ@ Sqrt[8 # + 9] &[# + 1 - k], {k, Floor[(# + 1)/2]}] &, 64] (* Michael De Vlieger, Jun 12 2019 *)

Extensions

Title simplified by Sean A. Irvine, Jun 12 2019

A024368 a(n) = s(1)t(n) + s(2)t(n-1) + ... + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = A023532, t = (Lucas numbers).

Original entry on oeis.org

1, 3, 4, 7, 15, 25, 47, 76, 123, 199, 340, 550, 919, 1487, 2453, 3969, 6422, 10391, 16936, 27403, 44538, 72064, 116924, 189187, 306632, 496141, 802773, 1298914, 2103051, 3402808, 5508066, 8912238
Offset: 1

Views

Author

Keywords

A024371 Sum_{ k=1 ... floor(n/2) } A023532(k)*Fib(n-k).

Original entry on oeis.org

0, 1, 2, 3, 5, 11, 18, 34, 55, 89, 144, 246, 398, 665, 1076, 1775, 2872, 4647, 7519, 12255, 19829, 32228, 52146, 84607, 136897, 221881, 359011, 580892, 939903, 1521782, 2462295, 3985674, 6448956, 10437214, 16887767, 27329162, 44219513
Offset: 1

Views

Author

Keywords

Examples

			a(5) = 1*Fib(5) + 1*Fib(3) = 8 + 3 = 11.
		

Formula

Also equals Sum_{ k = 1 ... floor((n+1)/2) } A023532(k)*Fib(n-k+1)

Extensions

Edited by Joshua Zucker, May 14 2007

A024375 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023532, t = A023533.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 2, 2, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 2, 2, 1, 2, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A024377 a(n) = s(1)t(n) + s(2)t(n-1) + ... + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = A023532, t = (primes).

Original entry on oeis.org

2, 3, 5, 7, 16, 20, 35, 43, 53, 65, 86, 106, 137, 153, 196, 220, 246, 270, 329, 353, 412, 454, 521, 559, 642, 686, 732, 780, 869, 917, 1032, 1080, 1199, 1263, 1388, 1456, 1597, 1673, 1735, 1823, 1974, 2062, 2227, 2301, 2476, 2572, 2761, 2863, 3062, 3166, 3365, 3475, 3591
Offset: 1

Views

Author

Keywords

Crossrefs

Showing 1-10 of 56 results. Next