cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A023569 Greatest prime divisor of prime(n) - 3.

Original entry on oeis.org

2, 2, 2, 5, 7, 2, 5, 13, 7, 17, 19, 5, 11, 5, 7, 29, 2, 17, 7, 19, 5, 43, 47, 7, 5, 13, 53, 11, 31, 2, 67, 17, 73, 37, 11, 5, 41, 17, 11, 89, 47, 19, 97, 7, 13, 11, 7, 113, 23, 59, 17, 31, 127, 13, 19, 67, 137, 139, 7, 29, 19, 11, 31, 157, 41, 167, 43, 173, 7, 89
Offset: 3

Views

Author

Keywords

Comments

a(n) = 2 if prime(n) is in A057733. - Robert Israel, Dec 28 2015

Crossrefs

Programs

  • Maple
    seq(max(numtheory:-factorset(ithprime(i)-3)), i=3..100); # Robert Israel, Dec 28 2015
  • Mathematica
    Table[FactorInteger[Prime[n] - 3] [[-1, 1]], {n, 3, 100}] (* Vincenzo Librandi, Dec 29 2015 *)
  • PARI
    a(n) = vecmax(factor(prime(n)-3)[,1]); \\ Michel Marcus, Dec 29 2015

Extensions

Corrected by Robert Israel, Dec 29 2015

A023516 Number of distinct prime divisors of prime(n)*prime(n-1) - 1.

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 3, 4, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 4, 3, 2, 4, 2, 3, 2, 4, 3, 3, 4, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 2, 3, 3, 4, 4, 4, 4, 4, 3, 4, 2, 3, 4, 2, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 2, 4
Offset: 1

Views

Author

Keywords

Comments

This is taking prime(0)=1 (see first comment in A023515). - Vincenzo Librandi, Apr 27 2019

Crossrefs

Programs

  • Magma
    [#PrimeDivisors(NthPrime(n)*(NthPrime(n-1))-1): n in [1..100]]; // Vincenzo Librandi, Apr 27 2019
    
  • Maple
    0,seq(nops(numtheory:-factorset(ithprime(n)*ithprime(n-1)-1)),n=2..120); # Muniru A Asiru, Apr 29 2019
  • Mathematica
    Prepend[Table[PrimeNu[Prime[n] Prime[n-1] - 1], {n, 2, 80}],0] (* Vincenzo Librandi, Apr 27 2019 *)
  • PARI
    a(n) = if (n==1, 0, omega(prime(n)*prime(n-1) - 1)); \\ Michel Marcus, Apr 30 2019

Formula

a(n) = A001221(A023515(n)).
Showing 1-2 of 2 results.