A023613 Convolution of Fibonacci numbers and A023533.
1, 1, 2, 4, 6, 10, 16, 26, 42, 69, 111, 180, 291, 471, 762, 1233, 1995, 3228, 5223, 8452, 13675, 22127, 35802, 57929, 93731, 151660, 245391, 397051, 642442, 1039493, 1681935, 2721428, 4403363, 7124791
Offset: 0
Keywords
Links
- Danny Rorabaugh, Table of n, a(n) for n = 0..4000
Programs
-
Magma
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >; [(&+[Fibonacci(k)*A023533(n+2-k): k in [1..n+1]]): n in [0..50]]; // G. C. Greubel, Jul 14 2022
-
Mathematica
Join[{1,1}, Table[Sum[Fibonacci[m+2 -Binomial[j+3,3]], {j,0,n}], {n,6}, {m, Binomial[n+3,3] -2, Binomial[n+4,3] -3}]]//Flatten (* G. C. Greubel, Jul 14 2022 *)
-
Sage
#Assuming A023533 is available as an array for n in range(34): print(n, sum([A023533[k]*fibonacci(n+2-k) for k in range(1,n+2)])) # Danny Rorabaugh, Mar 14 2015