A023626 Self-convolution of (1, p(1), p(2), ...).
1, 4, 10, 22, 43, 80, 137, 222, 343, 508, 737, 1030, 1411, 1888, 2477, 3198, 4059, 5096, 6297, 7702, 9327, 11176, 13301, 15682, 18355, 21344, 24673, 28358, 32411, 36896, 41769, 47082, 52883, 59148, 65937, 73298, 81251, 89776, 98957
Offset: 1
Keywords
Examples
G.f. = x + 4*x^2 + 10*x^3 + 22*x^4 + 43*x^5 + 80*x^6 + 137*x^7 + ...
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a023626 n = a023626_list !! (n-2) a023626_list = f a000040_list [1] where f (p:ps) rs = (sum $ zipWith (*) rs a008578_list) : f ps (p : rs) -- Reinhard Zumkeller, Nov 09 2015
-
Mathematica
z = 100; p = Join[{1}, Prime[Range[z]]]; a[n_] := Sum[p[[i]] p[[n - i + 1]], {i, 1, n}]; Table[a[n], {n, 1, z}] (* Clark Kimberling, Dec 01 2016 *) a[ n_] := If[ n < 1, 0, SeriesCoefficient[ (1 + O[x]^n + Sum[ Prime[k] x^k, {k, n - 1}])^2, {x, 0, n - 1}]]; (* Michael Somos, Dec 01 2016 *) Table[With[{c=Join[{1},Prime[Range[n]]]},ListConvolve[c,c]],{n,0,40}]// Flatten (* Harvey P. Dale, Oct 19 2018 *)
Formula
G.f: x*(1+b(x))^2 = (c(x)^2)/x, where b(x) and c(x) are respectively the g.f. of A000040 and A008578. - Mario C. Enriquez, Dec 10 2016
Comments