A119457 Triangle read by rows: T(n, 1) = n, T(n, 2) = 2*(n-1) for n>1 and T(n, k) = T(n-1, k-1) + T(n-2, k-2) for 2 < k <= n.
1, 2, 2, 3, 4, 3, 4, 6, 6, 5, 5, 8, 9, 10, 8, 6, 10, 12, 15, 16, 13, 7, 12, 15, 20, 24, 26, 21, 8, 14, 18, 25, 32, 39, 42, 34, 9, 16, 21, 30, 40, 52, 63, 68, 55, 10, 18, 24, 35, 48, 65, 84, 102, 110, 89, 11, 20, 27, 40, 56, 78, 105, 136, 165, 178, 144, 12, 22, 30, 45, 64, 91, 126, 170, 220, 267, 288, 233
Offset: 1
Examples
Triangle begins as: 1; 2, 2; 3, 4, 3; 4, 6, 6, 5; 5, 8, 9, 10, 8; 6, 10, 12, 15, 16, 13; 7, 12, 15, 20, 24, 26, 21; 8, 14, 18, 25, 32, 39, 42, 34; 9, 16, 21, 30, 40, 52, 63, 68, 55; 10, 18, 24, 35, 48, 65, 84, 102, 110, 89; 11, 20, 27, 40, 56, 78, 105, 136, 165, 178, 144; 12, 22, 30, 45, 64, 91, 126, 170, 220, 267, 288, 233;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- Eric Weisstein's World of Mathematics, Fibonacci Number
Crossrefs
Main diagonal: A023607(n).
Columns: A000027(n) (k=1), A005843(n-1) (k=2), A008585(n-2) (k=3), A008587(n-3) (k=4), A008590(n-4) (k=5), A008595(n-5) (k=6), A008603(n-6) (k=7).
Programs
-
Magma
A119457:= func< n,k | (n-k+1)*Fibonacci(k+1) >; [A119457(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 16 2025
-
Mathematica
(* First program *) T[n_, 1] := n; T[n_ /; n > 1, 2] := 2 n - 2; T[n_, k_] /; 2 < k <= n := T[n, k] = T[n - 1, k - 1] + T[n - 2, k - 2]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 01 2021 *) (* Second program *) A119457[n_,k_]:= (n-k+1)*Fibonacci[k+1]; Table[A119457[n,k], {n,13}, {k,n}]//Flatten (* G. C. Greubel, Apr 16 2025 *)
-
SageMath
def A119457(n,k): return (n-k+1)*fibonacci(k+1) print(flatten([[A119457(n,k) for k in range(1,n+1)] for n in range(1,13)])) # G. C. Greubel, Apr 16 2025
Formula
T(n, k) = (n-k+1)*T(k,k) for 1 <= k < n, with T(n, n) = A000045(n+1).
From G. C. Greubel, Apr 15 2025: (Start)
T(n, k) = (n-k+1)*Fibonacci(k+1).
Comments