cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A043329 Duplicate of A023699.

Original entry on oeis.org

2, 5, 6, 7, 11, 14, 15, 16, 18, 19, 21, 22, 29, 32, 33, 34, 38, 41, 42, 43, 45
Offset: 1

Views

Author

Keywords

A117592 a(n) = a(3n) = a(3n+1) = a(3n+2)/2 with a(0)=1.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 2, 4, 1, 1, 2, 1, 1, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 4, 4, 8, 1, 1, 2, 1, 1, 2, 2, 2, 4, 1, 1, 2, 1, 1, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 4, 4, 8, 2, 2, 4, 2, 2, 4, 4, 4, 8, 2, 2, 4, 2, 2, 4, 4, 4
Offset: 0

Views

Author

Paul Barry, Apr 05 2006

Keywords

Comments

Row sums of number triangle A117944.
Product of the nonzero digits of (n written in base 3). - Ilya Gutkovskiy, Nov 15 2020
a(n) = 1, 2, 4, 8, 16, 32, 64 iff n is respectively in A005836, A023699, A023700, A023701, A023702, A023703, A023704. - Bernard Schott, Dec 04 2020

Crossrefs

See A338882 for similar sequences.
Cf. A081603 (log_2), A117942 (signed), A117944.

Programs

  • Mathematica
    Nest[ Join[#, #, 2#] &, {1}, 5] (* Robert G. Wilson v, Jul 27 2014 *)
  • PARI
    a(n) = 1 << hammingweight(digits(n,3)>>1); \\ Kevin Ryde, Nov 15 2020
    
  • Python
    from gmpy2 import digits
    def A117592(n): return 1<Chai Wah Wu, Dec 05 2024

Formula

a(n) = a(3n)/a(0) = a(3n+1)/a(1) = a(3n+2)/a(2).
a(n) = abs(A117942(n)).
G.f. A(x) satisfies: A(x) = (1 + x + 2*x^2) * A(x^3). - Ilya Gutkovskiy, Nov 15 2020
a(n) = 2^A081603(n). - Kevin Ryde, Nov 15 2020

Extensions

a(0) = 1 added to the Name by Bernard Schott, Dec 04 2020

A291907 Numbers such that the nonzero digits in the base 3 expansion consists of two 1s and one 2.

Original entry on oeis.org

14, 16, 22, 32, 34, 38, 42, 46, 48, 58, 64, 66, 86, 88, 92, 96, 100, 102, 110, 114, 126, 136, 138, 144, 166, 172, 174, 190, 192, 198, 248, 250, 254, 258, 262, 264, 272, 276, 288, 298, 300, 306, 326, 330, 342, 378, 406, 408, 414, 432, 490, 496, 498, 514, 516, 522
Offset: 1

Views

Author

Richard Ehrenborg, Sep 05 2017

Keywords

Comments

If k belongs to this sequence, A060350(k) and A291903(k) are divisible by 3.

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], DigitCount[#, 3, {1, 2}] == {2, 1} &] (* Amiram Eldar, Apr 07 2022 *)

Formula

A023693 INTERSECT A023699. - R. J. Mathar, Nov 10 2017
Showing 1-3 of 3 results.