cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023872 Expansion of Product_{k>=1} (1 - x^k)^(-k^3).

Original entry on oeis.org

1, 1, 9, 36, 136, 477, 1703, 5746, 19099, 61622, 195366, 607069, 1856516, 5586870, 16579850, 48549116, 140438966, 401592524, 1136121837, 3181700219, 8825733603, 24261363403, 66124058839, 178757752892, 479513547399, 1276792213203, 3375707760306, 8864712158225
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=3 of A144048.
Cf. A248882.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^k^3: k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
    
  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1,
          add(add(d*d^3, d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 02 2012
  • Mathematica
    max = 27; Series[ Product[ 1/(1-x^k)^k^3, {k, 1, max}], {x, 0, max}] // CoefficientList[#, x]& (* Jean-François Alcover, Mar 05 2013 *)
  • PARI
    m=30; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^k^3)) \\ G. C. Greubel, Oct 30 2018
    
  • SageMath
    # uses[EulerTransform from A166861]
    b = EulerTransform(lambda n: n^3)
    print([b(n) for n in range(30)]) # Peter Luschny, Nov 11 2020

Formula

a(n) ~ (3*Zeta(5))^(59/600) * exp(5 * n^(4/5) * (3*Zeta(5))^(1/5) / 2^(7/5) + Zeta'(-3)) / (2^(41/200) * n^(359/600) * sqrt(5*Pi)), where Zeta(5) = A013663 = 1.036927755143369926..., Zeta'(-3) = ((gamma + log(2*Pi) - 11/6)/30 - 3*Zeta'(4)/Pi^4)/4 = 0.00537857635777430114441697421... . - Vaclav Kotesovec, Feb 27 2015
G.f.: exp( Sum_{n>=1} sigma_4(n)*x^n/n ). - Seiichi Manyama, Mar 04 2017
a(n) = (1/n)*Sum_{k=1..n} sigma_4(k)*a(n-k). - Seiichi Manyama, Mar 04 2017

Extensions

Definition corrected by Franklin T. Adams-Watters and R. J. Mathar, Dec 04 2006