cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023880 Number of partitions in expanding space.

Original entry on oeis.org

1, 1, 5, 32, 298, 3531, 51609, 894834, 17980052, 410817517, 10518031721, 298207687029, 9273094072138, 313757506696967, 11474218056441581, 450961669608632160, 18954582520550896213, 848384721904740036422, 40285256621556957160307, 2022695276960566890383148
Offset: 0

Views

Author

Keywords

Comments

Also partitions of n into 1 sort of 1, 4 sorts of 2, 27 sorts of 3, ..., k^k sorts of k. - Joerg Arndt, Feb 04 2015

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^(k^k): k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
    
  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(
          add(d*d^d, d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 04 2015
  • Mathematica
    nmax=20; CoefficientList[Series[Product[1/(1-x^k)^(k^k),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 14 2015 *)
  • PARI
    m=30; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^(k^k))) \\ G. C. Greubel, Oct 31 2018
    
  • SageMath
    # uses[EulerTransform from A166861]
    b = EulerTransform(lambda n: n^n)
    print([b(n) for n in range(20)]) # Peter Luschny, Nov 11 2020

Formula

G.f.: 1 / Product_{k>=1} (1 - x^k)^(k^k).
a(n) ~ n^n * (1 + exp(-1)/n + (exp(-1)/2 + 5*exp(-2))/n^2). - Vaclav Kotesovec, Mar 14 2015
a(n) = (1/n)*Sum_{k=1..n} A283498(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 11 2017