A023880 Number of partitions in expanding space.
1, 1, 5, 32, 298, 3531, 51609, 894834, 17980052, 410817517, 10518031721, 298207687029, 9273094072138, 313757506696967, 11474218056441581, 450961669608632160, 18954582520550896213, 848384721904740036422, 40285256621556957160307, 2022695276960566890383148
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^(k^k): k in [1..m]]) )); // G. C. Greubel, Oct 31 2018 -
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add( add(d*d^d, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..30); # Alois P. Heinz, Feb 04 2015
-
Mathematica
nmax=20; CoefficientList[Series[Product[1/(1-x^k)^(k^k),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 14 2015 *)
-
PARI
m=30; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^(k^k))) \\ G. C. Greubel, Oct 31 2018
-
SageMath
# uses[EulerTransform from A166861] b = EulerTransform(lambda n: n^n) print([b(n) for n in range(20)]) # Peter Luschny, Nov 11 2020
Formula
G.f.: 1 / Product_{k>=1} (1 - x^k)^(k^k).
a(n) ~ n^n * (1 + exp(-1)/n + (exp(-1)/2 + 5*exp(-2))/n^2). - Vaclav Kotesovec, Mar 14 2015
a(n) = (1/n)*Sum_{k=1..n} A283498(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 11 2017
Comments