cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023890 Sum of the nonprime divisors of n.

Original entry on oeis.org

1, 1, 1, 5, 1, 7, 1, 13, 10, 11, 1, 23, 1, 15, 16, 29, 1, 34, 1, 35, 22, 23, 1, 55, 26, 27, 37, 47, 1, 62, 1, 61, 34, 35, 36, 86, 1, 39, 40, 83, 1, 84, 1, 71, 70, 47, 1, 119, 50, 86, 52, 83, 1, 115, 56, 111, 58, 59, 1, 158, 1, 63, 94, 125, 66, 128, 1, 107, 70, 130, 1, 190, 1, 75
Offset: 1

Views

Author

Keywords

Comments

Obviously a(n) < sigma(n) for all n > 1, where sigma(n) is the sum of divisors function (A000203). It thus follows that a(n) = 1 when n = 1 or n is prime. - Alonso del Arte, Mar 16 2013

Examples

			a(8) = 13 because the divisors of 8 are 1, 2, 4, 8, and without the 2 they add up to 13.
a(9) = 10 because the divisors of 9 are 1, 3, 9, and without the 3 they add up to 10.
		

Crossrefs

Programs

  • Haskell
    a023890 n = sum $ zipWith (*) divs $ map ((1 -) . a010051) divs
                where divs = a027750_row n
    -- Reinhard Zumkeller, Apr 12 2014
    
  • Mathematica
    Array[ Plus @@ (Select[ Divisors[ # ], (!PrimeQ[ # ])& ])&, 75 ]
    Table[DivisorSum[n, # &, Not[PrimeQ[#]] &], {n, 75}] (* Alonso del Arte, Mar 16 2013 *)
    Table[CoefficientList[Series[Log[Product[(1 - x^Prime[k])/(1 - x^k), {k, 1, 100}]], {x, 0, 100}], x][[n + 1]] n, {n, 1, 100}] (* Benedict W. J. Irwin, Jul 05 2016 *)
    a[n_] := DivisorSigma[1, n] - Plus @@ FactorInteger[n][[;; , 1]]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Jun 20 2022 *)
  • PARI
    a(n)=if(n<1, 0, sumdiv(n,d, !isprime(d)*d)) /* Michael Somos, Jun 08 2005 */
    
  • Python
    from sympy import isprime
    def A023890(n):
        s=0
        for i in range(1,n+1):
            if n%i==0 and not isprime(i):
                s+=i
        return s # Indranil Ghosh, Jan 30 2017

Formula

Equals A051731 * A037282. - Gary W. Adamson, Nov 06 2007
a(n) = A023891(n) + 1 (sum of composite divisors of n + 1). [Alonso del Arte, Oct 01 2008]
a(n) = A000203(n) - A008472(n). - R. J. Mathar, Aug 14 2011
a(n) = Sum (a027750(n,k)*(1-A010051(a027750(n,k))): k=1..A000005(n)). - Reinhard Zumkeller, Apr 12 2014
L.g.f.: log(Product_{ k>0 } (1-x^prime(k))/(1-x^k)) = Sum_{ n>0 } (a(n)/n)*x^n. - Benedict W. J. Irwin, Jul 05 2016
a(n) = Sum_{d|n} d * (1 - [Omega(d) = 1]), where Omega is the number of prime factors with multiplicity (A001222) and [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jan 28 2021