A024013 2^n-n^3.
1, 1, -4, -19, -48, -93, -152, -215, -256, -217, 24, 717, 2368, 5995, 13640, 29393, 61440, 126159, 256312, 517429, 1040576, 2087891, 4183656, 8376441, 16763392, 33538807, 67091288, 134198045, 268413504, 536846523, 1073714824, 2147453857, 4294934528
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..240
- Index entries for linear recurrences with constant coefficients, signature (6,-14,16,-9,2).
Crossrefs
Programs
-
Magma
[2^n-n^3: n in [0..35]]; // Vincenzo Librandi, Apr 29 2011
-
Magma
I:=[1,1,-4,-19,-48]; [n le 5 select I[n] else 6*Self(n-1)-14*Self(n-2)+16*Self(n-3)-9*Self(n-4)+2*Self(n-5): n in [1..35]]; // Vincenzo Librandi, Oct 06 2014
-
Maple
A024013:=n->2^n-n^3: seq(A024013(n), n=0..40); # Wesley Ivan Hurt, Oct 21 2014
-
Mathematica
Table[2^n-n^3,{n,0,80}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011 *)
Formula
G.f.: (-1-3*x^4-3*x^3-4*x^2+5*x)/((-1+2*x)*(x-1)^4). [Maksym Voznyy (voznyy(AT)mail.ru), Aug 14 2009]
a(n) = 6*a(n-1)-14*a(n-2)+16*a(n-3)-9*a(n-4)+2*a(n-5) for n>4. - Vincenzo Librandi, Oct 06 2014