cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A024017 a(n) = 2^n - n^7.

Original entry on oeis.org

1, 1, -124, -2179, -16368, -78093, -279872, -823415, -2096896, -4782457, -9998976, -19485123, -35827712, -62740325, -105397120, -170826607, -268369920, -410207601, -611957888, -893347451, -1278951424, -1798991389, -2490163584, -3396436839
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. sequences of the form k^n-n^7: this sequence (k=2), A024030 (k=3), A024043 (k=4), A024056 (k=5), A024069 (k=6), A024082 (k=7), A024095 (k=8), A024108 (k=9), A024121 (k=10), A024134 (k=11), A024147 (k=12).

Programs

  • Magma
    [2^n-n^7: n in [0..25]]; // Vincenzo Librandi, Apr 30 2011
    
  • Magma
    I:=[1,1,-124,-2179,-16368,-78093,-279872,-823415,-2096896]; [n le 9 select I[n] else 10*Self(n-1)-44*Self(n-2)+112*Self(n-3)-182*Self(n-4)+196*Self(n-5)-140*Self(n-6)+64*Self(n-7)-17*Self(n-8)+2*Self(n-9): n in [1..35]]; // Vincenzo Librandi, Oct 07 2014
  • Mathematica
    Table[2^n - n^7, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - 9 x - 90 x^2 - 1007 x^3 + 36 x^4 + 3585 x^5 + 2290 x^6 + 231 x^7 + 3 x^8)/((1 - 2 x) (1 - x)^8), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 07 2014 *)
    LinearRecurrence[{10,-44,112,-182,196,-140,64,-17,2},{1,1,-124,-2179,-16368,-78093,-279872,-823415,-2096896},30] (* Harvey P. Dale, Feb 28 2023 *)

Formula

G.f.: (1-9*x-90*x^2-1007*x^3+36*x^4+3585*x^5+ 2290*x^6 +231*x^7+3*x^8)/((1-2*x)*(1-x)^8). - Vincenzo Librandi, Oct 07 2014
a(n) = 10*a(n-1)-44*a(n-2)+112*a(n-3)-182*a(n-4)+196*a(n-5)-140*a(n-6)+64*a(n-7)-17*a(n-8)+2*a(n-9). - Vincenzo Librandi, Oct 07 2014

A198695 a(n) = 11*4^n - 1.

Original entry on oeis.org

10, 43, 175, 703, 2815, 11263, 45055, 180223, 720895, 2883583, 11534335, 46137343, 184549375, 738197503, 2952790015, 11811160063, 47244640255, 188978561023, 755914244095, 3023656976383, 12094627905535, 48378511622143, 193514046488575, 774056185954303, 3096224743817215
Offset: 0

Views

Author

Vincenzo Librandi, Oct 29 2011

Keywords

Crossrefs

Programs

  • Magma
    [11*4^n-1: n in [0..30]];
  • Mathematica
    11*4^Range[0,30]-1 (* or *) NestList[4#+3&,10,30] (* or *) LinearRecurrence[ {5,-4},{10,43},30] (* Harvey P. Dale, Aug 07 2021 *)

Formula

a(n) = 4*a(n-1) + 3.
a(n) = 5*a(n-1) - 4*a(n-2), n > 1.
G.f.: (10-7*x)/((4*x-1)*(x-1)). - R. J. Mathar, Oct 30 2011
From Elmo R. Oliveira, May 07 2025: (Start)
E.g.f.: exp(x)*(11*exp(3*x) - 1).
a(n) = A199211(n) - 2. (End)

A243860 a(n) = 2^(n+1) - (n-1)^2.

Original entry on oeis.org

1, 4, 7, 12, 23, 48, 103, 220, 463, 960, 1967, 3996, 8071, 16240, 32599, 65340, 130847, 261888, 523999, 1048252, 2096791, 4193904, 8388167, 16776732, 33553903, 67108288, 134217103, 268434780, 536870183, 1073741040, 2147482807, 4294966396, 8589933631, 17179868160, 34359737279, 68719475580
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Jun 12 2014

Keywords

Comments

Sequences of the form (k-1)^m - m^(k+1):
k\m | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
-----------------------------------------------------------------------
0 | 1 | -2 | -1 | -4 | -3 | -6 | -5 |
1 | 1 | -1 | -4 | -9 | -16 | -25 | -36 |
2 | 1 | 0 | -7 | -26 | -63 | -124 | -215 |
3 | 1 | 1 | -12 | -73 | -240 | -593 | -1232 |
4 | 1 | 2 | -23 | -216 | -943 | -2882 | -7047 |
5 | 1 | 3 | -43 | -665 | -3840 | -14601 | -42560 |
6 | 1 | 4 | -103 | -2062 | -15759 | -75000 | -264311 |
7 | 1 | 5 | -220 | -6345 | -64240 | -382849 | -1632960 |
8 | 1 | 6 | -463 | -19340 | -259743 | -1936318 | -9960047 |
9 | 1 | 7 | -960 | -58537 | -1044480 | -9732857 | -60204032 |
10 | 1 | 8 | -1967 | -176418 | -4187743 | -48769076 | -362265615 |
11 | 1 | 9 | -3996 | -530441 | -16767216 | -244040625 | -2175782336 |

Examples

			1 = 2^(0+1) - (0-1)^2, 4 = 2^(1+1) - (1-1)^2, 7 = 2^(2+1) - (2-1)^2.
		

Crossrefs

Sequences of the form (k-1)^m - m^(k+1): A000012 (m = 0), A023444 (m = 1), (-1)*(this sequence) for m = 2, A114285 (k = 0),(A000007-A000290) for k = 1, A024001 (k = 2), A024014 (k = 3), A024028 (k = 4), A024042 (k = 5), A024056 (k = 6), A024070 (k = 7), A024084 (k = 8), A024098 (k = 9), A024112 (k = 10), A024126 (k = 11).

Programs

  • Magma
    [2^(n+1) - (n-1)^2: n in [0..35]];
    
  • Maple
    A243860:=n->2^(n + 1) - (n - 1)^2; seq(A243860(n), n=0..30); # Wesley Ivan Hurt, Jun 12 2014
  • Mathematica
    Table[2^(n + 1) - (n - 1)^2, {n, 0, 30}] (* Wesley Ivan Hurt, Jun 12 2014 *)
    LinearRecurrence[{5,-9,7,-2},{1,4,7,12},40] (* Harvey P. Dale, Nov 29 2015 *)
  • PARI
    Vec((6*x^3-4*x^2-x+1)/((x-1)^3*(2*x-1)) + O(x^100)) \\ Colin Barker, Jun 12 2014

Formula

a(n) = 5*a(n-1)-9*a(n-2)+7*a(n-3)-2*a(n-4). - Colin Barker, Jun 12 2014
G.f.: (6*x^3-4*x^2-x+1) / ((x-1)^3*(2*x-1)). - Colin Barker, Jun 12 2014
Showing 1-3 of 3 results.