cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A024018 2^n-n^8.

Original entry on oeis.org

1, 1, -252, -6553, -65520, -390593, -1679552, -5764673, -16776960, -43046209, -99998976, -214356833, -429977600, -815722529, -1475772672, -2562857857, -4294901760, -6975626369, -11019698432, -16983038753, -25598951424
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. sequences of the form k^n-n^8: this sequence (k=2), A024031 (k=3), A024044 (k=4), A024057 (k=5), A024070 (k=6), A024083 (k=7), A024096 (k=8), A024109 (k=9), A024122 (k=10), A024135 (k=11), A024148 (k=12).

Programs

  • Magma
    [2^n-n^8: n in [0..25]]; // Vincenzo Librandi, Apr 30 2011
    
  • Magma
    I:=[1,1,-252,-6553,-65520,-390593,-1679552,-5764673,-16776960, -43046209]; [n le 10 select I[n] else 11*Self(n-1)-54*Self(n-2) +156*Self(n-3)-294*Self(n-4)+378*Self(n-5)-336*Self(n-6)+204*Self(n-7) -81*Self(n-8)+19*Self(n-9)-2*Self(n-10): n in [1..35]]; // Vincenzo Librandi, Oct 08 2014
  • Mathematica
    Table[2^n - n^8, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - 10 x - 209 x^2 - 3883 x^3 - 6907 x^4 + 15493 x^5 + 27029 x^6 + 8303 x^7 + 502 x^8 + x^9)/((1 - 2 x) (1 - x)^9), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 08 2014 *)

Formula

G.f.: (1 -10*x -209*x^2 -3883*x^3 -6907*x^4 +15493*x^5 +27029*x^6 +8303*x^7 +502*x^8 +x^9) / ((1-2*x)*(1-x)^9). - Vincenzo Librandi, Oct 08 2014
a(n) = 11*a(n-1) -54*a(n-2) +156*a(n-3) -294*a(n-4) +378*a(n-5) -336*a(n-6)+204*a(n-7) -81*a(n-8) +19*a(n-9) -2*a(n-10) for n>9. - Vincenzo Librandi, Oct 08 2014

A243860 a(n) = 2^(n+1) - (n-1)^2.

Original entry on oeis.org

1, 4, 7, 12, 23, 48, 103, 220, 463, 960, 1967, 3996, 8071, 16240, 32599, 65340, 130847, 261888, 523999, 1048252, 2096791, 4193904, 8388167, 16776732, 33553903, 67108288, 134217103, 268434780, 536870183, 1073741040, 2147482807, 4294966396, 8589933631, 17179868160, 34359737279, 68719475580
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Jun 12 2014

Keywords

Comments

Sequences of the form (k-1)^m - m^(k+1):
k\m | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
-----------------------------------------------------------------------
0 | 1 | -2 | -1 | -4 | -3 | -6 | -5 |
1 | 1 | -1 | -4 | -9 | -16 | -25 | -36 |
2 | 1 | 0 | -7 | -26 | -63 | -124 | -215 |
3 | 1 | 1 | -12 | -73 | -240 | -593 | -1232 |
4 | 1 | 2 | -23 | -216 | -943 | -2882 | -7047 |
5 | 1 | 3 | -43 | -665 | -3840 | -14601 | -42560 |
6 | 1 | 4 | -103 | -2062 | -15759 | -75000 | -264311 |
7 | 1 | 5 | -220 | -6345 | -64240 | -382849 | -1632960 |
8 | 1 | 6 | -463 | -19340 | -259743 | -1936318 | -9960047 |
9 | 1 | 7 | -960 | -58537 | -1044480 | -9732857 | -60204032 |
10 | 1 | 8 | -1967 | -176418 | -4187743 | -48769076 | -362265615 |
11 | 1 | 9 | -3996 | -530441 | -16767216 | -244040625 | -2175782336 |

Examples

			1 = 2^(0+1) - (0-1)^2, 4 = 2^(1+1) - (1-1)^2, 7 = 2^(2+1) - (2-1)^2.
		

Crossrefs

Sequences of the form (k-1)^m - m^(k+1): A000012 (m = 0), A023444 (m = 1), (-1)*(this sequence) for m = 2, A114285 (k = 0),(A000007-A000290) for k = 1, A024001 (k = 2), A024014 (k = 3), A024028 (k = 4), A024042 (k = 5), A024056 (k = 6), A024070 (k = 7), A024084 (k = 8), A024098 (k = 9), A024112 (k = 10), A024126 (k = 11).

Programs

  • Magma
    [2^(n+1) - (n-1)^2: n in [0..35]];
    
  • Maple
    A243860:=n->2^(n + 1) - (n - 1)^2; seq(A243860(n), n=0..30); # Wesley Ivan Hurt, Jun 12 2014
  • Mathematica
    Table[2^(n + 1) - (n - 1)^2, {n, 0, 30}] (* Wesley Ivan Hurt, Jun 12 2014 *)
    LinearRecurrence[{5,-9,7,-2},{1,4,7,12},40] (* Harvey P. Dale, Nov 29 2015 *)
  • PARI
    Vec((6*x^3-4*x^2-x+1)/((x-1)^3*(2*x-1)) + O(x^100)) \\ Colin Barker, Jun 12 2014

Formula

a(n) = 5*a(n-1)-9*a(n-2)+7*a(n-3)-2*a(n-4). - Colin Barker, Jun 12 2014
G.f.: (6*x^3-4*x^2-x+1) / ((x-1)^3*(2*x-1)). - Colin Barker, Jun 12 2014
Showing 1-2 of 2 results.