A024196 a(n) = 2nd elementary symmetric function of the first n+1 odd positive integers.
3, 23, 86, 230, 505, 973, 1708, 2796, 4335, 6435, 9218, 12818, 17381, 23065, 30040, 38488, 48603, 60591, 74670, 91070, 110033, 131813, 156676, 184900, 216775, 252603, 292698, 337386, 387005, 441905, 502448, 569008, 641971, 721735, 808710, 903318
Offset: 1
Examples
a(8) = 8*80+7*79+6*78+5*77+4*76+3*75+2*74+1*73 = 2796. - _Bruno Berselli_, Mar 13 2012
Links
- Bruno Berselli, Table of n, a(n) for n = 1..1000
- Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
From Johannes W. Meijer, Jun 08 2009: (Start)
Equals third right hand column of A028338 triangle.
Equals third left hand column of A109692 triangle.
Equals third right hand column of A161198 triangle divided by 2^m.
(End)
Cf. A016061.
Programs
-
GAP
List([1..36], n -> n*(n+1)*(3*n^2+5*n+1)/6); # Muniru A Asiru, Feb 13 2018
-
Maple
seq(n*(n+1)*(3*n^2+5*n+1)/6,n=1..25); # Muniru A Asiru, Feb 13 2018
-
Mathematica
f[k_] := 2 k - 1; t[n_] := Table[f[k], {k, 1, n}] a[n_] := SymmetricPolynomial[2, t[n]] Table[a[n], {n, 2, 50}] (* A024196 *) (* Clark Kimberling, Dec 31 2011 *) Table[(n(n+1)(3n^2+5n+1))/6,{n,50}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{3,23,86,230,505},50] (* Harvey P. Dale, Jul 08 2019 *)
Formula
a(n) = n*(n+1)*(3*n^2+5*n+1)/6.
From Bruno Berselli, Mar 13 2012: (Start)
G.f.: x*(3 + 8*x + x^2)/(1 - x)^5.
a(n) = Sum_{i=1..n} (n+1-i)*((n+1)^2-i).
a(n) = Sum_{i=1..n} ((2*i-1)*Sum_{j=i..n} (2*j+1)) = 1*(3+5+...2*n+1) + 3*(5+7+...+2*n+1) + ... + (2*n-1)*(2*n+1). - J. M. Bergot, Apr 21 2017
a(n) = A028338(n+1, n-1), n >= 1, (third diagonal). See the crossref. below. Wolfdieter Lang, Jul 21 2017