cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024365 Areas of right triangles with coprime integer sides.

Original entry on oeis.org

6, 30, 60, 84, 180, 210, 330, 504, 546, 630, 840, 924, 990, 1224, 1320, 1386, 1560, 1710, 1716, 2310, 2340, 2574, 2730, 3036, 3570, 3900, 4080, 4290, 4620, 4914, 5016, 5610, 5814, 6090, 6630, 7140, 7440, 7854, 7956, 7980, 8970, 8976, 9690, 10374
Offset: 1

Views

Author

Keywords

Comments

Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives areas A*B/2.
By Theorem 2 of Mohanty and Mohanty, all these numbers are primitive Pythagorean. - T. D. Noe, Sep 24 2013
This sequence also gives Fibonacci's congruous numbers (without multiplicity, in increasing order) divided by 4. See A258150. - Wolfdieter Lang, Jun 14 2015
The same as A024406 with duplicates removed. All terms are multiples of 6, cf. A258151. - M. F. Hasler, Jan 20 2019

Examples

			6 is in the sequence because it is the area of the 3-4-5 triangle.
a(7) = 210 corresponds to the two primitive Pythagorean triangles (21, 20, 29) and (35, 12, 37). See A024406. - _Wolfdieter Lang_, Jun 14 2015
		

Crossrefs

Cf. A009111, A009112, A024406 (with multiplicity), A258150, A024407, A258151 (terms divided by 6).
Subsequence of A073120 and A147778.

Programs

  • Mathematica
    nn = 22; (* nn must be even *) t = Union[Flatten[Table[If[GCD[u, v] == 1 && Mod[u, 2] + Mod[v, 2] == 1, u v (u^2 - v^2), 0], {u, nn}, {v, u - 1}]]]; Select[Rest[t], # < nn (nn^2 - 1) &] (* T. D. Noe, Sep 19 2013 *)
  • PARI
    select( {is_A024365(n)=my(N=1+#n=divisors(2*n)); for(i=1, N\2, gcd(n[i], n[N-i])==1 && issquare(n[i]^2+n[N-i]^2) && return(n[i]))}, [1..10^4]) \\ is_A024365 returns the smaller leg if n is a term, else 0. - M. F. Hasler, Jun 06 2024

Formula

Positive integers of the form u*v*(u^2 - v^2) where 2uv and u^2 - v^2 are coprime or, alternatively, where u, v are coprime and one of them is even.
a(n) = 6*A258151(n). - M. F. Hasler, Jan 20 2019

Extensions

Additional comments James R. Buddenhagen, Aug 10 2008 and from Max Alekseyev, Nov 12 2008
Edited by N. J. A. Sloane, Nov 20 2008 at the suggestion of R. J. Mathar