cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A024413 Positions of odd numbers in A024412.

Original entry on oeis.org

1, 2, 4, 6, 7, 8, 10, 12, 13, 14, 15, 19, 20, 22, 25, 26, 29, 30, 31, 35, 36, 38, 41, 43, 45, 47, 48, 51, 52, 56, 57, 61, 62, 64, 66, 68, 69, 72, 73, 76, 77, 78, 79, 82, 83, 85, 87, 88, 91, 92, 93, 97, 98, 101, 102, 103, 106, 107, 108, 111, 112, 115, 116, 119, 120, 124, 125, 128, 129, 132, 133, 137
Offset: 1

Views

Author

Keywords

Extensions

a(23) onward corrected by Sean A. Irvine, Jul 08 2019

A024414 Positions of even numbers in A024412.

Original entry on oeis.org

0, 3, 5, 9, 11, 16, 17, 18, 21, 23, 24, 27, 28, 32, 33, 34, 37, 39, 40, 42, 44, 46, 49, 50, 53, 54, 55, 58, 59, 60, 63, 65, 67, 70, 71, 74, 75, 80, 81, 84, 86, 89, 90, 94, 95, 96, 99, 100, 104, 105, 109, 110, 113, 114, 117, 118, 121, 122, 123, 126, 127, 130, 131, 134, 135, 136, 138, 140
Offset: 1

Views

Author

Keywords

Programs

  • Mathematica
    s2 = Union[Flatten[Table[Table[StirlingS2[n, k], {k, 1, 200}], {n, 1, 200}]]]; Select[Range[200], EvenQ[s2[[#]]] &] - 1 (* Vaclav Kotesovec, Jul 09 2019 *)

Extensions

Missing a(1)=0 inserted and later terms corrected by Sean A. Irvine, Jul 08 2019

A024415 Position of max{s(n,k): k=1,2,...,n} in A024412, n >= 1, where s(n,k) = Stirling numbers of the second kind.

Original entry on oeis.org

1, 1, 2, 4, 8, 18, 37, 77, 155, 342, 775, 1770, 4486
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A024412.

Extensions

a(8)-a(9) corrected and a(10)-a(13) from Sean A. Irvine, Jul 09 2019

A024416 a(n) = position of next-to-largest s(n,k), for k=1,2,...,n, in A024412, n >= 3, where s(n,k) = Stirling numbers of the second kind.

Original entry on oeis.org

1, 3, 6, 15, 35, 63, 147, 308, 668, 1735, 4034
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

a(6)-a(7) corrected and a(8)-a(11) from Sean A. Irvine, Jul 09 2019

A374796 Positive integers that can be written as a Stirling number of the second kind in more than one way.

Original entry on oeis.org

1, 15, 4095, 66066
Offset: 1

Views

Author

Pontus von Brömssen, Jul 20 2024

Keywords

Comments

k*(k+1)/2 is a term if k is a term of A215797 and k != 0,2.
a(5) > 10^8 (if it exists).

Examples

			With S2(n,k) = A008277(n,k):
      1 = S2( 1, 1) = S2(  2,  1) (for example);
     15 = S2( 5, 2) = S2(  6,  5);
   4095 = S2(13, 2) = S2( 91, 90);
  66066 = S2(14,11) = S2(364,363).
		

Crossrefs

A193246 Ordered unsigned Stirling numbers |S1(n,k)|.

Original entry on oeis.org

0, 1, 2, 3, 6, 10, 11, 15, 21, 24, 28, 35, 36, 45, 50, 55, 66, 78, 85, 91, 105, 120, 136, 153, 171, 175, 190, 210, 225, 231, 253, 274, 276, 300, 322, 325, 351, 378, 406, 435, 465, 496, 528, 546, 561, 595, 630, 666, 703, 720, 735, 741, 780, 820, 861, 870, 903
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 01 2013

Keywords

Comments

List all unsigned Stirling numbers of the first kind, sort and remove duplicates.
The only numbers below 10^8 that appear in more than one place in the table A130534 are 1, 6, and 120. - Pontus von Brömssen, Jul 20 2024

Crossrefs

Programs

  • Mathematica
    s1 = Union[Flatten[Table[Table[Abs[StirlingS1[n, k]], {k, 1, 100}], {n, 1, 100}]]]; Table[s1[[j]], {j, 1, 100}]

A375999 Narayana numbers (A001263), sorted, duplicates removed.

Original entry on oeis.org

1, 3, 6, 10, 15, 20, 21, 28, 36, 45, 50, 55, 66, 78, 91, 105, 120, 136, 153, 171, 175, 190, 196, 210, 231, 253, 276, 300, 325, 336, 351, 378, 406, 435, 465, 490, 496, 528, 540, 561, 595, 630, 666, 703, 741, 780, 820, 825, 861, 903, 946, 990, 1035, 1081, 1128
Offset: 1

Views

Author

Pontus von Brömssen, Sep 06 2024

Keywords

Crossrefs

Programs

  • Python
    from bisect import insort
    from itertools import islice
    def A375999_generator():
        yield 1
        nkN_list = [(3, 2, 3)] # List of triples (n, k, A001263(n, k)), sorted by the last element.
        while 1:
            N0 = nkN_list[0][2]
            yield N0
            while 1:
                n, k, N = nkN_list[0]
                if N > N0: break
                del nkN_list[0]
                insort(nkN_list, (n+1, k, n*(n+1)*N//((n-k+1)*(n-k+2))), key=lambda x:x[2])
                if n == 2*k-1:
                    insort(nkN_list, (n+2, k+1, 4*n*(n+2)*N//(k+1)**2), key=lambda x:x[2])
    def A375999_list(nmax):
        return list(islice(A375999_generator(),nmax))

A193245 Ordered Stirling numbers S1(n,k) >= 0.

Original entry on oeis.org

0, 1, 2, 11, 24, 35, 85, 175, 274, 322, 546, 720, 870, 1320, 1624, 1925, 2717, 3731, 5005, 6580, 6769, 8500, 10812, 13068, 13566, 16815, 20615, 22449, 25025, 30107, 35926, 40320, 42550, 50050, 58500, 63273, 67977, 78561, 90335, 103385, 117800, 118124, 133672
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 01 2013

Keywords

Comments

List all Stirling numbers of the first kind >=0, sort and remove duplicates.

Crossrefs

Programs

  • Mathematica
    s1 = Select[Union[Flatten[Table[Table[StirlingS1[n,k], {k,1,100}], {n,1,100}]]], #>=0&]; Table[s1[[j]], {j, 1, 100}]

A325503 Heinz number of row n of the triangle of Stirling numbers of the second kind A008277.

Original entry on oeis.org

2, 4, 20, 884, 528844, 3460086044, 340672148731996, 477782556719729075524, 11694209380474301218263758996, 4967476846044415922850025924897606724, 43298471669920632729336800855543564573041217668, 7790810575556906457316064931238939360882160372451591124244
Offset: 1

Views

Author

Gus Wiseman, May 07 2019

Keywords

Comments

The Heinz number of a positive integer sequence (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
                              2: {1}
                              4: {1,1}
                             20: {1,1,3}
                            884: {1,1,6,7}
                         528844: {1,1,10,15,25}
                     3460086044: {1,1,15,31,65,90}
                340672148731996: {1,1,21,63,140,301,350}
          477782556719729075524: {1,1,28,127,266,966,1050,1701}
  11694209380474301218263758996: {1,1,36,255,462,2646,3025,6951,7770}
		

Crossrefs

Programs

  • Mathematica
    Times@@@Table[Prime[StirlingS2[n,k]],{n,1,10},{k,1,n}]

Formula

a(n) = Product_{i = 1..n} prime(A008277(n,i)).
A061395(a(n)) = A002870(n).
A056239(a(n)) = A000110(n).
Showing 1-9 of 9 results.