cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A024421 a(n) = n!*(1/C(n,0) - 1/C(n,1) - ... - 1/C(n,[ n/2 ])).

Original entry on oeis.org

1, 1, 1, 4, 14, 84, 516, 3936, 32544, 305280, 3123360, 35112960, 427559040, 5629236480, 79568697600, 1203310080000, 19381043404800, 331357630464000, 5993331073228800, 114354145640448000, 2295517848809472000, 48363337839624192000
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A024420.

Programs

  • Mathematica
    Table[n!(1/Binomial[n,0]-Sum[1/Binomial[n,d],{d,Floor[n/2]}]),{n,0,30}] (* Harvey P. Dale, Feb 03 2024 *)
  • PARI
    a(n) = n!*(1 - sum(k=1, floor(n/2), 1/binomial(n,k))); \\ Michel Marcus, Jul 10 2019

Extensions

More terms from Sean A. Irvine, Jul 10 2019

A370418 Triangle read by rows. T(n, k) = (n - k)! * (n + k)!.

Original entry on oeis.org

1, 1, 2, 4, 6, 24, 36, 48, 120, 720, 576, 720, 1440, 5040, 40320, 14400, 17280, 30240, 80640, 362880, 3628800, 518400, 604800, 967680, 2177280, 7257600, 39916800, 479001600, 25401600, 29030400, 43545600, 87091200, 239500800, 958003200, 6227020800, 87178291200
Offset: 0

Views

Author

Peter Luschny, Feb 27 2024

Keywords

Examples

			Triangle starts:
[0]      1;
[1]      1,      2;
[2]      4,      6,     24;
[3]     36,     48,    120,     720;
[4]    576,    720,   1440,    5040,   40320;
[5]  14400,  17280,  30240,   80640,  362880,  3628800;
[6] 518400, 604800, 967680, 2177280, 7257600, 39916800, 479001600;
		

Crossrefs

Cf. A010050 (main diagonal), A009445 (subdiagonal), A001044 (column 0), A175430 (column 1), A024420 (bisection is alternating sum).

Programs

  • Maple
    T := (n, k) -> (n - k)! * (n + k)!:
    seq(seq(T(n, k), k = 0..n), n = 0..7);
  • Mathematica
    Table[(n - k)!*(n + k)!, {n, 0, 7}, {k, 0, n}] // Flatten (* Michael De Vlieger, Mar 05 2024 *)

Formula

Sum_{k=0..n} (-1)^k*T(n, k) = n!^2 / 2 + (-1)^n * (2*n + 2)! / (2*n + 2)^2.
Showing 1-2 of 2 results.