A024619 Numbers that are not powers of primes p^k (k >= 0); complement of A000961.
6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 (first 8719 terms from Daniel Forgues)
- Donald McCarthy, Sylow's theorem is a sharp partial converse to Lagrange's theorem, Mathematische Zeitschrift, 113, 383-384 (1970).
- Marius Munteanu and Laura Munteanu, Rational equiangular polygons, Applied Math., 4 (2013), 1460-1465.
- Laurentiu Panaitopol, Some of the properties of the sequence of powers of prime numbers, Rocky Mountain Journal of Mathematics, Volume 31, Number 4, Winter 2001.
- Eric Weisstein's World of Mathematics, Prime Power
- Wikipedia, Prime power
- G. J. Woeginger, Nothing new about equiangular polygons, Amer. Math. Monthly, 120 (2013), 849-850.
- Günter Ziegler and Brady Haran, Cannons and Sparrows, Numberphile video (2018).
Crossrefs
Programs
-
Haskell
a024619 n = a024619_list !! (n-1) a024619_list = filter ((== 0) . a010055) [1..] -- Reinhard Zumkeller, Nov 17 2011
-
Magma
IsA024619:=func< n | not IsPrime(n) and not (t and IsPrime(b) where t, b, A024619(n)%20%5D;%20//%20_Klaus%20Brockhaus">:=IsPower(n)) >; [ n: n in [2..200] | IsA024619(n) ]; // _Klaus Brockhaus, Feb 25 2011
-
Maple
a := proc(n) numtheory[factorset](n); if 1 < nops(%) then n else NULL fi end: seq(a(i), i=1..110); # Peter Luschny, Aug 11 2009
-
Mathematica
Select[Range@111, Length@FactorInteger@# > 1 &] (* Robert G. Wilson v, Dec 07 2005 *)
-
PARI
is(n)=n>5 && !isprimepower(n) \\ Charles R Greathouse IV, Mar 21 2013
-
Python
from sympy import primepi from sympy.ntheory.primetest import integer_nthroot def A024619(n): def f(x): return int(n+1+sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length()))) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Jul 23 2024
-
Sage
def A024619_list(n) : return [k for k in (2..n) if not k.is_prime() and not k.is_prime_power()] A024619_list(112) # Peter Luschny, Feb 03 2012 [corrected by Terry D. Grant, Sep 16 2020]
Formula
A001221(a(n)) > 1.
A014963(a(n)) = 1.
A020500(a(n)) = 1. - Benoit Cloitre, Aug 26 2003
A010055(a(n)) = 0. - Reinhard Zumkeller, Nov 17 2011
a(n) ~ n. - Charles R Greathouse IV, Mar 21 2013
a(n) ~ n - pi(n) [See Panaitopol]. - N. J. A. Sloane, Sep 27 2020
A118887(a(n)) > 0. - Jonathan Sondow, Oct 17 2013
Comments