cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024643 n written in fractional base 7/6.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 60, 61, 62, 63, 64, 65, 66, 650, 651, 652, 653, 654, 655, 656, 6540, 6541, 6542, 6543, 6544, 6545, 6546, 65430, 65431, 65432, 65433, 65434, 65435, 65436, 654320, 654321, 654322, 654323, 654324, 654325, 654326, 6543210, 6543211, 6543212, 6543213, 6543214, 6543215, 6543216, 65432100, 65432101, 65432102, 65432103, 65432104, 65432105, 65432106, 65432160
Offset: 0

Views

Author

Keywords

Comments

To represent a number in base b, if a digit is >= b, subtract b and carry 1. In fractional base a/b, subtract a and carry b.

Examples

			From _Petros Hadjicostas_, Jul 22 2020: (Start)
14 = 6*(7/6)^2 + 5*(7/6)^1 + 0*(7/6)^0 = 650_{7/6}.
15 = 6*(7/6)^2 + 5*(7/6)^1 + 1*(7/6)^0 = 651_{7/6}.
21 = 6*(7/6)^3 + 5*(7/6)^2 + 4*(7/6)^1 + 1*(7/6)^0 = 6541_{7/6}.
22 = 6*(7/6)^3 + 5*(7/6)^2 + 4*(7/6)^1 + 2*(7/6)^0 = 6542_{7/6}.
28 = 6*(7/6)^4 + 5*(7/6)^3 + 4*(7/6)^2 + 3*(7/6)^1 + 0*(7/6)^0 = 65430_{7/6}. (End)
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = If[n == 0, 0, 10 * a[6 * Floor[n/7]] + Mod[n, 7]]; Array[a, 50, 0] (* Amiram Eldar, Jul 31 2025 *)
  • PARI
    a(n) = {if(n<1, 0, a(n\7 * 6) * 10 + n%7)}; \\ Andrew Howroyd, Aug 19 2019

Extensions

Terms a(44) and beyond from Andrew Howroyd, Aug 19 2019