cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A245402 Number of nonnegative integers with property that their base 7/6 expansion (see A024643) has n digits.

Original entry on oeis.org

7, 7, 7, 7, 7, 7, 7, 14, 14, 14, 21, 21, 28, 28, 35, 42, 49, 56, 63, 77, 91, 105, 119, 140, 161, 189, 224, 259, 301, 350, 413, 483, 560, 651, 763, 889, 1036, 1211, 1414, 1645, 1925, 2240, 2618, 3052, 3563, 4158, 4851, 5656, 6601, 7700, 8981, 10479, 12229, 14266
Offset: 1

Views

Author

Hailey R. Olafson, Jul 21 2014

Keywords

Examples

			a(3) = 7 because 650, 651, 652, 653, 654, 655 and 656 are the base 7/6 expansions for the integers 14, 15, 16, 17, 18, 19 and 20 respectively and these are the only integers with 3 digits.
		

Crossrefs

Programs

  • Sage
    A=[1]
    for i in [1..60]:
        A.append(ceil(((7-6)/6)*sum(A)))
    [7*x for x in A]

Formula

a(n) = 7*A120178(n).

A245337 Sum of digits of n in fractional base 7/6.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 11, 12, 11, 12, 13, 14, 15, 16, 17, 15, 16, 17, 18, 19, 20, 21, 18, 19, 20, 21, 22, 23, 24, 20, 21, 22, 23, 24, 25, 26, 21, 22, 23, 24, 25, 26, 27, 21, 22, 23, 24, 25, 26, 27, 27, 28, 29, 30, 31, 32, 33, 26, 27, 28, 29, 30
Offset: 0

Views

Author

James Van Alstine, Jul 18 2014

Keywords

Comments

The base 7/6 expansion is unique and thus the sum of digits function is well-defined.

Examples

			In base 7/6 the number 7 is represented by 60 and so a(7) = 6+0 = 6.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = If[n == 0, 0, a[6 * Floor[n/7]] + Mod[n, 7]]; Array[a, 100, 0] (* Amiram Eldar, Jul 31 2025 *)
  • PARI
    a(n) = if(n == 0, 0, a(n\7 * 6) + n % 7); \\ Amiram Eldar, Jul 31 2025
  • Sage
    # uses [basepqsum from A245355]
    [basepqsum(7,6,y) for y in [0..200]]
    

Formula

a(n) = A007953(A024643(n)). - Amiram Eldar, Jul 31 2025

A245477 Period 6: repeat [1, 1, 1, 1, 1, 2].

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 0

Views

Author

Hailey R. Olafson, Jul 23 2014

Keywords

Comments

First differences of A047368. The first differences of this sequence are in A131533. - Wesley Ivan Hurt, Jul 24 2014
Binomial Transform of a(n) gives: 1, 2, 4, 8, 16, 33, 70, 149, 312, 638, 1276, 2511, ... - Wesley Ivan Hurt, Aug 13 2014

Crossrefs

Programs

  • Magma
    [Floor((n+1)*7/6) - Floor((n)*7/6) : n in [0..100]]; // Wesley Ivan Hurt, Aug 06 2014
  • Maple
    A:= n -> piecewise(n mod 6 = 5, 2, 1);
    seq(A(n), n=0..100); # Robert Israel, Jul 23 2014
  • Mathematica
    Table[2 - Sign[Mod[n + 1, 6]], {n, 0, 100}] (* Wesley Ivan Hurt, Jul 24 2014 *)
    PadRight[{},120,{1,1,1,1,1,2}] (* Harvey P. Dale, Jun 02 2016 *)
  • PARI
    a(n) = 7*(n+1)\6 - 7*n\6; \\ Michel Marcus, Jul 23 2014
    
  • Sage
    [floor((n+1)*7/6) - floor((n)*7/6) for n in [0..200]]
    

Formula

a(n) = floor((n+1)*7/6) - floor((n)*7/6).
G.f.: 1/(1-x) + x^5/(1-x^6). - Robert Israel, Jul 23 2014
From Wesley Ivan Hurt, Jul 24 2014, Aug 06-29 2014: (Start)
a(n) = 2 - sign((n+1) mod 6).
a(n) = 3 - 2^sign((n+1) mod 6).
a(n) = A172051(n) + 1.
a(2n) = 1, a(2n+1) = A177702(n).
Sum_{i=0..n-2} a(i) = A047368(n), n>0.
a(n) = 1 + mod(n, 1 + mod(n-1, 3)).
a(n) = 1 + binomial(mod(5n + 10, 6), 5). (End)
From Wesley Ivan Hurt, Jun 23 2016: (Start)
a(n) = a(n-6) for n>5.
a(n) = (7 - cos(n*Pi) + cos(n*Pi/3) - cos(2*n*Pi/3) - sqrt(3)*sin(n*Pi/3) - sqrt(3)*sin(2*n*Pi/3))/6. (End)
Showing 1-3 of 3 results.