A024697 a(n) = p(1)p(n) + p(2)p(n-1) + ... + p(k)p(n+1-k), where k = [ (n+1)/2 ], p = A000040 = the primes.
4, 6, 19, 29, 68, 94, 177, 231, 400, 484, 753, 903, 1340, 1552, 2157, 2489, 3352, 3784, 5013, 5515, 7052, 7758, 9773, 10575, 13076, 14076, 17023, 18339, 21876, 23414, 27715, 29437, 34570, 36500, 42335, 44731, 51560, 54198, 61955, 65051, 73700, 77402, 87293
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a024697 n = a024697_list !! (n-1) a024697_list = f (tail a000040_list) [head a000040_list] 2 where f (p:ps) qs k = sum (take (div k 2) $ zipWith (*) qs $ reverse qs) : f ps (p : qs) (k + 1) -- Reinhard Zumkeller, Apr 07 2014
-
Maple
A024697:=n->sum( ithprime(k)*ithprime(n-k+1), k=1..(n+1)/2 ); seq(A024697(n), n=1..50); # Wesley Ivan Hurt, Apr 06 2014
-
Mathematica
Table[Sum[Prime[k] Prime[n - k + 1], {k, (n + 1)/2}], {n, 50}] (* Wesley Ivan Hurt, Apr 06 2014 *)
-
PARI
A024697(n)=sum(k=1, (n+1)\2, prime(k)*prime(n-k+1)) \\ M. F. Hasler, Apr 06 2014
Extensions
Name edited and values double-checked by M. F. Hasler, Apr 06 2014
Comments