cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024699 a(n) = (prime(n+2)-1)/6 if this is an integer or (prime(n+2)+ 1)/6 otherwise.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 12, 13, 14, 15, 16, 17, 17, 18, 18, 19, 21, 22, 23, 23, 25, 25, 26, 27, 28, 29, 30, 30, 32, 32, 33, 33, 35, 37, 38, 38, 39, 40, 40, 42, 43, 44, 45, 45, 46, 47, 47, 49, 51, 52, 52, 53, 55, 56, 58, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70
Offset: 1

Views

Author

Keywords

Comments

Also number of partitions of n-th prime > 3 into a sum of 2's or 3's (inclusive or).
From Wolfdieter Lang, Mar 13 2012: (Start)
The primes of the form 6*k+1 are given in A002476.
For n >= 1 such that prime(n+2) is from A002476, one has 8*T(prime(n+2)-1) + 1 = r(n)^2, n >= 1, with the triangular numbers T(n) = A000217(n) and r(n) = A208296(n). Therefore, 24*prime(n+2)*a(n) + 1 = r(n)^2. E.g., n=2: prime(4)=7, a(2)=1, 8*21 + 1 = 13^2 = A208296(2)^2 = 24*7*1 + 1.
The primes of the form 6*k-1 are given in A007528.
For n >= 1 such that prime(n+2) is from A007528, one has 8*T(prime(n+2)) + 1 = r(n)^2. For T and r see the preceding comment. Therefore, 24*prime(n+2)*a(n) + 1 = r(n)^2. E.g., n=1, prime(3)=5, a(1)=1, 8*15 + 1 = 11^2 = A208296(1)^2 = 24*5*1 + 1.
(End)

Programs

  • Magma
    [(NthPrime(n+2)+3) div 6: n in [1..80]]; // Vincenzo Librandi, Sep 06 2016
  • Maple
    From R. J. Mathar, May 02 2010: (Start)
    A103221 := proc(n) a := 0 ; for t from 0 do if 2*t > n then return a; end if; if n-2*t mod 3 = 0 then a := a+1 ; end if; end do : end proc:
    A024699 := proc(n) A103221(ithprime(n+2)) ; end proc: seq(A024699(n),n=1..120) ; (End)
  • Mathematica
    pi6[n_]:=Module[{p=Prime[n+2],c},c=(p-1)/6;If[IntegerQ[c],c,(p+1)/6]]; Array[pi6,80] (* Harvey P. Dale, Aug 19 2013 *)
    Table[Floor[(Prime[n + 2] + 3) / 6], {n, 100}] (* Vincenzo Librandi, Sep 06 2016 *)
  • PARI
    a(n) = (prime(n+2)+3)\6; \\ Michel Marcus, Sep 06 2016; after Wolfdieter Lang
    

Formula

a(n) = A103221(prime(n+2)). - R. J. Mathar, May 02 2010
a(n) = floor((prime(n+2)+3)/6), n >= 1, prime(n)=A000040(n). Consider the two cases prime(n+2) == 1 (mod 6) and == -1 (mod 6) separately. See the formula above. - Wolfdieter Lang, Mar 15 2012