cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024791 Number of 7's in all partitions of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 16, 23, 32, 45, 61, 84, 112, 151, 199, 263, 342, 446, 574, 739, 943, 1201, 1518, 1917, 2404, 3010, 3749, 4661, 5766, 7122, 8759, 10753, 13153, 16059, 19544, 23743, 28759, 34774, 41938, 50491, 60642, 72718, 87004, 103934, 123908
Offset: 1

Views

Author

Keywords

Comments

The sums of seven successive terms give A000070. - Omar E. Pol, Jul 12 2012
a(n) is also the difference between the sum of 7th largest and the sum of 8th largest elements in all partitions of n. - Omar E. Pol, Oct 25 2012

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local g;
          if n=0 or i=1 then [1, 0]
        else g:= `if`(i>n, [0$2], b(n-i, i));
             b(n, i-1) +g +[0, `if`(i=7, g[1], 0)]
          fi
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=1..100);  # Alois P. Heinz, Oct 27 2012
  • Mathematica
    << DiscreteMath`Combinatorica`; Table[ Count[ Flatten[ Partitions[n]], 7], {n, 1, 52} ]
    Table[Count[Flatten[IntegerPartitions[n]],7],{n,55}] (* Harvey P. Dale, Feb 26 2015 *)
    b[n_, i_] := b[n, i] = Module[{g}, If[n == 0 || i == 1, {1, 0}, g = If[i > n, {0, 0}, b[n - i, i]]; b[n, i - 1] + g + {0, If[i == 7, g[[1]], 0]}]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 09 2015, after Alois P. Heinz *)
  • PARI
    x='x+O('x^50); concat([0, 0, 0, 0, 0, 0], Vec(x^7/(1 - x^7) * prod(k=1, 50, 1/(1 - x^k)))) \\ Indranil Ghosh, Apr 06 2017

Formula

a(n) = A181187(n,7) - A181187(n,8). - Omar E. Pol, Oct 25 2012
a(n) ~ exp(Pi*sqrt(2*n/3)) / (14*Pi*sqrt(2*n)) * (1 - 85*Pi/(24*sqrt(6*n)) + (85/48 + 4873*Pi^2/6912)/n). - Vaclav Kotesovec, Nov 05 2016
G.f.: x^7/(1 - x^7) * Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Apr 06 2017