A024937 a(n) = number of 2's in all partitions of n into distinct primes.
0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 4, 3, 5, 4, 4, 5, 5, 6, 6, 5, 7, 7, 7, 8, 8, 9, 8, 9, 11, 11, 10, 12, 12, 13, 14, 14, 16, 15, 16, 17, 19, 20, 20, 20, 22, 24, 23, 26, 27, 27, 28, 30, 33, 34, 34, 36, 37, 40, 41, 43, 46, 46, 47, 50, 55, 56, 56, 58, 63, 64
Offset: 0
Keywords
Links
- Sean A. Irvine, Java program (github)
Crossrefs
Cf. A024939.
Programs
-
Maple
with(numtheory): b:= proc(n, i) option remember; local g; if n=0 then [1, 0] elif i<1 then [0, 0] else g:= `if`(ithprime(i)>n, [0$2], b(n-ithprime(i), i-1)); b(n, i-1) +g +[0, `if`(i=1,g[1],0)] fi end: a:= n-> b(n, pi(n))[2]: seq(a(n), n=0..80); # Sean A. Irvine, after Alois P. Heinz, Jul 29 2019
-
Mathematica
max = 100; (* number of terms *) CoefficientList[x^2*Product[1+x^Prime[k], {k, 2, PrimePi[max]}]+O[x]^max, x] (* Jean-François Alcover, Sep 07 2022, after Vladeta Jovovic *)
Formula
G.f.: x^2*Product_{k>1} (1+x^prime(k)). - Vladeta Jovovic, Jul 20 2003
Extensions
More terms from Vladeta Jovovic, Jul 20 2003
a(0)-a(6) prepended by Sean A. Irvine, Jul 29 2019