A024938 Total number of parts in all partitions of n into distinct prime parts.
0, 1, 1, 0, 3, 0, 3, 2, 2, 5, 1, 5, 3, 5, 5, 7, 5, 10, 6, 10, 12, 10, 15, 12, 16, 17, 17, 19, 22, 17, 27, 21, 30, 30, 31, 35, 36, 40, 45, 45, 49, 53, 50, 62, 60, 69, 69, 73, 78, 85, 88, 98, 100, 105, 116, 116, 134, 135, 141, 149, 154, 168, 176, 188, 195, 206, 211, 232, 242, 255, 267, 276
Offset: 1
Examples
a(16) = 7 because the partitions of 16 into distinct prime parts are [13,3], [11,5] and [11,3,2].
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A084993.
Programs
-
Maple
g:=sum(x^ithprime(j)/(1+x^ithprime(j)),j=1..30)*product(1+x^ithprime(j),j=1..30): gser:=series(g,x=0,80): seq(coeff(gser,x,n),n=1..75); # Emeric Deutsch, Apr 01 2006 # second Maple program: with(numtheory): b:= proc(n, i) option remember; local g; if n=0 then [1, 0] elif i<1 then [0, 0] else g:= `if`(ithprime(i)>n, [0$2], b(n-ithprime(i), i-1)); b(n, i-1) +g +[0, g[1]] fi end: a:= n-> b(n, pi(n))[2]: seq(a(n), n=1..80); # Alois P. Heinz, Oct 30 2012
-
Mathematica
Rest@ CoefficientList[ Series[ Sum[x^Prime@j/(1 + x^Prime@j), {j, 20}]* Product[1 + x^Prime@j, {j, 20}], {x, 0, 70}], x] (* Robert G. Wilson v *) b[n_, i_] := b[n, i] = Module[{g}, If[n==0, {1, 0}, If[i < 1, {0, 0}, g = If[ Prime[i] > n, {0, 0}, b[n - Prime[i], i-1]]; b[n, i-1] + g + {0, g[[1]]}]]]; a[n_] := b[n, PrimePi[n]][[2]]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Dec 27 2015, after Alois P. Heinz *)
-
PARI
sumparts(n, pred)={sum(k=1, n, 1 - 1/(1+pred(k)*x^k) + O(x*x^n))*prod(k=1, n, 1+pred(k)*x^k + O(x*x^n))} {my(n=60); Vec(sumparts(n, isprime), -n)} \\ Andrew Howroyd, Dec 28 2017
Formula
G.f.: sum(x^p(j)/(1+x^p(j)),j>=1)*product(1+x^p(j), j>=1), where p(j) is the j-th prime. - Vladeta Jovovic, Jul 17 2003
Extensions
More terms from Vladeta Jovovic, Jul 17 2003