cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024997 a(n) = number of (s(0), s(1), ..., s(n)) such that every s(i) is an integer, s(0) = 0 = s(n), |s(i) - s(i-1)| = 1 for i = 1,2; |s(i) - s(i-1)| <= 1 for i >= 3. Also a(n) = T(n,n), where T is the array defined in A024996.

Original entry on oeis.org

2, 8, 20, 58, 162, 462, 1318, 3782, 10886, 31436, 91016, 264134, 768094, 2237640, 6529284, 19079574, 55826166, 163538472, 479588844, 1407813438, 4136307798, 12163015662, 35793391662, 105407889930, 310620540202, 915913267652, 2702265079208
Offset: 3

Views

Author

Keywords

Comments

Second differences of the central trinomial coefficients A002426. - T. D. Noe, Mar 16 2005

Crossrefs

Cf. A025179.

Programs

  • Mathematica
    Rest[Differences[CoefficientList[Series[1/Sqrt[(1 + x) (1 - 3 x)], {x, 0, 30}], x], 2]] (* Harvey P. Dale, May 11 2013 *)
    Table[2 Sum[Binomial[n, 2 k] Binomial[2 k + 1, k + 1], {k, 0, Floor[n/2]}],  {n, 1, 25}] (* G. C. Greubel, Mar 01 2017 *)
    Rest[Rest[CoefficientList[Series[((1 - x)^2 - (1 - x) Sqrt[1 - 2 x - 3 x^2])/(x Sqrt[1 - 2 x - 3 x^2]), {x, 0, 15}], x]]] (* G. C. Greubel, Mar 02 2017 *)
  • PARI
    x='x +O('x^50); Vec(((1-x)^2-(1-x +2*x^2)*sqrt(1-2*x-3*x^2)) /(x*sqrt(1 - 2*x -3*x^2))) \\ G. C. Greubel, Mar 01 2017

Formula

a(n) = 2*A025179(n-1).
From G. C. Greubel, Mar 01 2017: (Start)
a(n) = 2*Sum_{k=0..floor(n/2)} binomial(n, 2*k)*binomial(2*k+1, k+1), for n>=1.
O.g.f.: ((1-x)^2-(1-x+2*x^2)*sqrt(1-2*x-3*x^2)) / sqrt(1-2*x-3*x^2) [corrected by Charles R Greathouse IV, Mar 05 2017]
E.g.f.: 2*exp(x)*(BesselI(0, 2*x) + BesselI(2, 2*x)). (End)