A024997 a(n) = number of (s(0), s(1), ..., s(n)) such that every s(i) is an integer, s(0) = 0 = s(n), |s(i) - s(i-1)| = 1 for i = 1,2; |s(i) - s(i-1)| <= 1 for i >= 3. Also a(n) = T(n,n), where T is the array defined in A024996.
2, 8, 20, 58, 162, 462, 1318, 3782, 10886, 31436, 91016, 264134, 768094, 2237640, 6529284, 19079574, 55826166, 163538472, 479588844, 1407813438, 4136307798, 12163015662, 35793391662, 105407889930, 310620540202, 915913267652, 2702265079208
Offset: 3
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 3..1000
Crossrefs
Cf. A025179.
Programs
-
Mathematica
Rest[Differences[CoefficientList[Series[1/Sqrt[(1 + x) (1 - 3 x)], {x, 0, 30}], x], 2]] (* Harvey P. Dale, May 11 2013 *) Table[2 Sum[Binomial[n, 2 k] Binomial[2 k + 1, k + 1], {k, 0, Floor[n/2]}], {n, 1, 25}] (* G. C. Greubel, Mar 01 2017 *) Rest[Rest[CoefficientList[Series[((1 - x)^2 - (1 - x) Sqrt[1 - 2 x - 3 x^2])/(x Sqrt[1 - 2 x - 3 x^2]), {x, 0, 15}], x]]] (* G. C. Greubel, Mar 02 2017 *)
-
PARI
x='x +O('x^50); Vec(((1-x)^2-(1-x +2*x^2)*sqrt(1-2*x-3*x^2)) /(x*sqrt(1 - 2*x -3*x^2))) \\ G. C. Greubel, Mar 01 2017
Formula
a(n) = 2*A025179(n-1).
From G. C. Greubel, Mar 01 2017: (Start)
a(n) = 2*Sum_{k=0..floor(n/2)} binomial(n, 2*k)*binomial(2*k+1, k+1), for n>=1.
O.g.f.: ((1-x)^2-(1-x+2*x^2)*sqrt(1-2*x-3*x^2)) / sqrt(1-2*x-3*x^2) [corrected by Charles R Greathouse IV, Mar 05 2017]
E.g.f.: 2*exp(x)*(BesselI(0, 2*x) + BesselI(2, 2*x)). (End)
Comments