A025129 a(n) = p(1)p(n) + p(2)p(n-1) + ... + p(k)p(n-k+1), where k = [ n/2 ], p = A000040, the primes.
0, 6, 10, 29, 43, 94, 128, 231, 279, 484, 584, 903, 1051, 1552, 1796, 2489, 2823, 3784, 4172, 5515, 6091, 7758, 8404, 10575, 11395, 14076, 15174, 18339, 19667, 23414, 24906, 29437, 31089, 36500, 38614, 44731, 47071, 54198, 56914, 65051, 68371, 77402, 81052, 91341
Offset: 1
Keywords
Examples
From _Gus Wiseman_, Dec 05 2020: (Start) The sequence of sums begins (n > 1): 6 = 6 10 = 10 29 = 14 + 15 43 = 22 + 21 94 = 26 + 33 + 35 128 = 34 + 39 + 55 231 = 38 + 51 + 65 + 77 279 = 46 + 57 + 85 + 91 (End)
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Gus Wiseman, Sum of prime(i) * prime(j) for i + j = n, i != j.
Crossrefs
The nonsquarefree version is A024697 (shifted right).
Row sums of A338905 (shifted right).
A332765 is the greatest among these squarefree semiprimes.
A001358 lists semiprimes.
A006881 lists squarefree semiprimes.
A014342 is the self-convolution of the primes.
A056239 is the sum of prime indices of n.
A339194 sums squarefree semiprimes grouped by greater prime factor.
Programs
-
Haskell
a025129 n = a025129_list !! (n-1) a025129_list= f (tail a000040_list) [head a000040_list] 1 where f (p:ps) qs k = sum (take (div k 2) $ zipWith (*) qs $ reverse qs) : f ps (p : qs) (k + 1) -- Reinhard Zumkeller, Apr 07 2014
-
Mathematica
f[n_] := Block[{primeList = Prime@ Range@ n}, Total[ Take[ primeList, Floor[n/2]]*Reverse@ Take[ primeList, {Floor[(n + 3)/2], n}]]]; Array[f, 44] (* Robert G. Wilson v, Apr 07 2014 *)
-
PARI
A025129=n->sum(k=1,n\2,prime(k)*prime(n-k+1)) \\ M. F. Hasler, Apr 06 2014
Formula
a(n) = A024697(n) for even n. - M. F. Hasler, Apr 06 2014
Extensions
Following suggestions by Robert Israel and N. J. A. Sloane, initial 0=a(1) added by M. F. Hasler, Apr 06 2014
Comments