cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025148 Number of partitions of n into distinct parts >= 3.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 15, 17, 20, 24, 28, 32, 38, 44, 51, 59, 68, 78, 91, 103, 118, 136, 155, 176, 201, 228, 259, 294, 332, 375, 425, 478, 538, 607, 681, 764, 858, 961, 1075, 1203, 1343, 1499, 1673, 1863, 2073, 2308, 2564, 2847, 3161, 3504
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A025147.

Programs

  • Maple
    with(combstruct) ; sys := {L = PowerSet(Sequence(Z,card>2)) }; seq( count([L,sys],size=i), i=0..56 ); # Zerinvary Lajos, Mar 08 2007
    A025148 := proc(n) mul(1+x^k,k=3..n+1) ; expand(%) ; coeftayl(%,x=0,n) ; end proc: # R. J. Mathar, Mar 28 2011
    # third Maple program:
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`((i-2)*(i+3)/2 b(n$2):
    seq(a(n), n=0..100);  # Alois P. Heinz, Feb 07 2014
  • Mathematica
    d[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 && Min[#] >= 3 &]; Table[d[n], {n, 16}] (* strict partitions, parts >= 3 *)
    Table[Length[d[n]], {n, 40}] (* A025148 for n >= 1 *)
    (* Clark Kimberling, Mar 07 2014 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[(i-2)*(i+3)/2Jean-François Alcover, Oct 22 2015, after Alois P. Heinz *)

Formula

G.f.: Product_{k>=3} (1+x^k).
a(n) = A096749(n+2). - R. J. Mathar, Jul 31 2008
G.f.: sum(n>=0, x^(n*(n+5)/2) / prod(k=1..n, 1-x^k) ); special case of g.f. for partitions into distinct parts >= L, sum(n>=0, x^(n*(n+2*L-1)/2) / prod(k=1..n, 1-x^k) ). - Joerg Arndt, Mar 24 2011
G.f.: sum(n>=2, x^(n*(n+1)/2-3) / prod(k=1..n-2, 1-x^k) ), a special case of the g.f. for partitions into distinct parts >= L, sum(n>=L-1, x^(n*(n+1)/2-L*(L-1)/2) / prod(k=1..n-(L-1), 1-x^k) ). - Joerg Arndt, Mar 27 2011
a(n) + a(n+1) + a(n+2) + a(n+3) = A000009(n+3). - Vaclav Kotesovec, Oct 22 2015
a(n) ~ 1/4 * A000009(n). - Vaclav Kotesovec, Oct 22 2015