A026823 Essentially same as A025148.
0, 1, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 15, 17, 20, 24, 28, 32, 38
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(7) = 3, from {{3, 4}, {2, 5}, {7}} From _Joerg Arndt_, Jun 10 2013: (Start) There are a(17) = 21 partitions of 17 into distinct parts >=2: 01: [ 2 3 4 8 ] 02: [ 2 3 5 7 ] 03: [ 2 3 12 ] 04: [ 2 4 5 6 ] 05: [ 2 4 11 ] 06: [ 2 5 10 ] 07: [ 2 6 9 ] 08: [ 2 7 8 ] 09: [ 2 15 ] 10: [ 3 4 10 ] 11: [ 3 5 9 ] 12: [ 3 6 8 ] 13: [ 3 14 ] 14: [ 4 5 8 ] 15: [ 4 6 7 ] 16: [ 4 13 ] 17: [ 5 12 ] 18: [ 6 11 ] 19: [ 7 10 ] 20: [ 8 9 ] 21: [ 17 ] (End)
a025147 = p 2 where p _ 0 = 1 p k m = if m < k then 0 else p (k + 1) (m - k) + p (k + 1) m -- Reinhard Zumkeller, Dec 28 2011
g:=product(1+x^j,j=2..65): gser:=series(g,x=0,62): seq(coeff(gser,x,n),n=0..57); # Emeric Deutsch, Apr 09 2006 with(combstruct):ZL := {L = PowerSet(Sequence(Z,card>=2)) },unlabeled:seq(count([L,ZL],size=i),i=0..57); # Zerinvary Lajos, Mar 09 2007
CoefficientList[Series[Product[1+q^n, {n, 2, 60}], {q, 0, 60}], q] FoldList[ PartitionsQ[ #2+1 ]-#1&, 0, Range[ 64 ] ] (* also *) d[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 && Min[#] >= 2 &]; Table[d[n], {n, 12}] (* strict partitions, parts >= 2 *) Table[Length[d[n]], {n, 40}] (* A025147 for n >= 1 *) (* Clark Kimberling, Mar 07 2014 *) p[, 0] = 1; p[k, m_] := p[k, m] = If[m < k, 0, p[k+1, m-k] + p[k+1, m]]; Table[p[2, m], {m, 0, 59}] (* Jean-François Alcover, Apr 17 2014, after Reinhard Zumkeller *)
a(n)=if(n,my(v=partitions(n));sum(i=1,#v,v[i][1]>1&&v[i]==vecsort(v[i],,8)),1) \\ Charles R Greathouse IV, Nov 20 2012
1 + x^3 + x^5 + x^6 + x^7 + x^8 + 2*x^9 + 2*x^10 + 2*x^11 + 3*x^12 + 3*x^13 + ... q + q^73 + q^121 + q^145 + q^169 + q^193 + 2*q^217 + 2*q^241 + 2*q^265 + ... a(10)=2 because we have [7,3] and [5,5]. From _Joerg Arndt_, Jun 11 2013: (Start) There are a(22)=13 symmetric unimodal compositions of 22+3=25 where the maximal part appears three times: 01: [ 1 1 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 1 1 ] 02: [ 1 1 1 1 1 1 2 3 3 3 2 1 1 1 1 1 1 ] 03: [ 1 1 1 1 1 5 5 5 1 1 1 1 1 ] 04: [ 1 1 1 1 2 2 3 3 3 2 2 1 1 1 1 ] 05: [ 1 1 1 2 5 5 5 2 1 1 1 ] 06: [ 1 1 2 2 2 3 3 3 2 2 2 1 1 ] 07: [ 1 1 3 5 5 5 3 1 1 ] 08: [ 1 1 7 7 7 1 1 ] 09: [ 1 2 2 5 5 5 2 2 1 ] 10: [ 1 4 5 5 5 4 1 ] 11: [ 2 2 2 2 3 3 3 2 2 2 2 ] 12: [ 2 3 5 5 5 3 2 ] 13: [ 2 7 7 7 2 ] (End) From _Gus Wiseman_, Feb 16 2021: (Start) The a(7) = 1 through a(19) = 8 partitions are the following (A..J = 10..19). The Heinz numbers of these partitions are given by A341449. 7 53 9 55 B 75 D 77 F 97 H 99 J 333 73 533 93 553 95 555 B5 755 B7 775 3333 733 B3 753 D3 773 D5 955 5333 933 5533 953 F3 973 33333 7333 B33 5553 B53 53333 7533 D33 9333 55333 333333 73333 (End)
a087897 = p [3,5..] where p [] _ = 0 p _ 0 = 1 p ks'@(k:ks) m | m < k = 0 | otherwise = p ks' (m - k) + p ks m -- Reinhard Zumkeller, Aug 12 2011
To get 128 terms: t4 := mul((1+x^(2^n)),n=0..7); t5 := mul((1+x^k),k=1..128): t6 := series(t5/t4,x,100); t7 := seriestolist(t6); # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<3, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i)))) end: a:= n-> b(n, n-1+irem(n, 2)): seq(a(n), n=0..80); # Alois P. Heinz, Jun 11 2013
max = 65; f[x_] := Product[ 1/(1 - x^(2k+1)), {k, 1, max}]; CoefficientList[ Series[f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 16 2011, after Emeric Deutsch *) b[n_, i_] := b[n, i] = If[n==0, 1, If[i<3, 0, b[n, i-2]+If[i>n, 0, b[n-i, i]]] ]; a[n_] := b[n, n-1+Mod[n, 2]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Apr 01 2015, after Alois P. Heinz *) Flatten[{1, Table[PartitionsQ[n+1] - PartitionsQ[n], {n, 0, 80}]}] (* Vaclav Kotesovec, Dec 01 2015 *) Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&OddQ[Times@@#]&]],{n,0,30}] (* Gus Wiseman, Feb 16 2021 *)
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - x) * eta(x^2 + A) / eta(x + A), n))} /* Michael Somos, Nov 13 2011 */
from functools import lru_cache @lru_cache(maxsize=None) def A087897_T(n,k): if n==0: return 1 if k<3 or n<0: return 0 return A087897_T(n,k-2)+A087897_T(n-k,k) def A087897(n): return A087897_T(n,n-(n&1^1)) # Chai Wah Wu, Sep 23 2023, after Alois P. Heinz
Triangle begins: 1 0 1 0 0 2 1 1 1 2 1 0 1 1 3 1 1 1 1 2 3 1 1 1 2 2 2 4 2 2 3 2 3 2 3 4 2 2 3 2 3 3 3 3 5 3 2 4 3 4 4 5 3 4 5 3 3 5 4 4 5 5 5 4 4 6 4 3 6 5 6 5 7 5 7 4 5 6 5 5 7 7 8 7 8 8 7 7 5 5 7 6 5 9 8 10 7 10 9 10 7 9 5 6 7 7 7 10 10 12 11 11 11 12 10 9 9 6 6 8 9 7 13 11 15 12 13 13 15 13 13 9 11 6 7 8 Row n = 9 counts the following strict partitions: (6,2,1) (5,3,1) (4,3,2) (5,3,1) (6,2,1) (6,2,1) (8,1) (4,3,2) (4,3,2) (5,3,1) (7,2) (6,3) (5,4) Row n = 13 counts the following strict partitions (A=10, B=11, C=12): A21 931 841 751 652 751 841 931 A21 A21 C1 7321 7321 832 742 643 7321 742 832 832 931 B2 6421 5431 7321 6421 6421 652 7321 7321 742 841 A3 6421 5431 5431 6421 643 643 652 751 94 5431 5431 5431 6421 85 76
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&MemberQ[Total/@Subsets[#,{2}], k]&]], {n,3,10}, {k,3,n}]
a(7) = 3 because we have [7], [4, 3] and [3, 4].
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`((i-2)*(i+3)/2b(n$2, 0): seq(a(n), n=0..50); # Alois P. Heinz, Nov 23 2020
nmax = 50; CoefficientList[Series[Sum[k! x^(k (k + 5)/2)/Product[1 - x^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]
From _Michael De Vlieger_, Aug 03 2020: (Start) Table begins: 1 1 1 2 1 1 2 1 1 1 3 2 1 1 1 4 2 1 1 1 1 5 3 2 1 1 1 1 6 3 2 1 1 1 1 1 8 5 3 2 1 1 1 1 1 10 5 3 2 1 1 1 1 1 1 12 7 4 3 2 1 1 1 1 1 1 15 8 5 3 2 1 1 1 1 1 1 1 ... (End)
import Data.List (tails) a026835 n k = a026835_tabl !! (n-1) !! (k-1) a026835_row n = a026835_tabl !! (n-1) a026835_tabl = map (\row -> map (p $ last row) $ init $ tails row) a002260_tabl where p 0 _ = 1 p _ [] = 0 p m (k:ks) = if m < k then 0 else p (m - k) ks + p m ks -- Reinhard Zumkeller, Dec 01 2012
Nest[Function[{T, n, r}, Append[T, Table[1 + Total[T[[##]] & @@@ Select[r, #[[-1]] > k + 1 &]], {k, 0, n}]]] @@ {#1, #2, Transpose[1 + {#2 - #3, #3}]} & @@ {#1, #2, Range[Ceiling[#2/2] - 1]} & @@ {#, Length@ #} &, {{1}}, 12] // Flatten (* Michael De Vlieger, Aug 03 2020 *)
b:= proc(n, i) option remember; `if`(n=0, 1, `if`((i-2)*(i+3)/2`if`(n<2, 0, b(n-2$2)): seq(a(n), n=0..60); # Alois P. Heinz, Feb 07 2014 # Using the function EULER from Transforms (see link at the bottom of the page). [0,0,1,op(EULER([0,0,1,1,seq(irem(n,2),n=1..57)]))]; # Peter Luschny, Aug 19 2020
b[n_, i_] := b[n, i] = If[n == 0, 1, If[(i-2)*(i+3)/2Jean-François Alcover, Oct 13 2014, after Alois P. Heinz *) Join[{0}, Table[Count[Last /@ Select[IntegerPartitions@n, DeleteDuplicates[#] == # &], 2], {n, 66}]] (* Robert Price, Jun 13 2020 *)
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0, b(n, i+1)+b(n-i, i+1)*binomial(n, i))) end: a:= n-> b(n, 3): seq(a(n), n=0..30); # Alois P. Heinz, Apr 28 2021
nmax = 29; CoefficientList[Series[Product[(1 + x^k/k!), {k, 3, nmax}], {x, 0, nmax}], x] Range[0, nmax]! a[0] = 1; a[n_] := a[n] = -(n - 1)! Sum[DivisorSum[k, # (-#!)^(-k/#) &, # > 2 &] a[n - k]/(n - k)!, {k, 1, n}]; Table[a[n], {n, 0, 29}]
Triangle begins: 1 0 1 1 0 1 0 1 1 1 0 2 1 0 2 1 0 1 3 1 1 0 3 2 1 0 5 2 1 0 5 3 1 0 1 7 3 1 1 0 8 4 2 1 0 10 5 2 1 0 12 6 3 1 0 15 7 3 1 0 1
mingap[q_]:=Min@@Complement[Range[If[q=={},0,Max[q]]+1],q]; Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&mingap[#]==k&]],{n,0,15},{k,Round[Sqrt[2*(n+1)]]}]
Comments