A025179 a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is an integer, s(0) = 0, |s(1)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2, s(n) = 1. Also a(n) = T(n,n-1), where T is the array defined in A025177.
1, 4, 10, 29, 81, 231, 659, 1891, 5443, 15718, 45508, 132067, 384047, 1118820, 3264642, 9539787, 27913083, 81769236, 239794422, 703906719, 2068153899, 6081507831, 17896695831, 52703944965, 155310270101, 457956633826, 1351132539604
Offset: 2
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 2..1000 (terms 2..200 from T. D. Noe)
Programs
-
Mathematica
Rest[Rest[CoefficientList[Series[((1-x)^2-(1-x)*Sqrt[1-2*x-3*x^2]) /(2*x*Sqrt[1-2*x-3*x^2]), {x, 0, 20}], x]]] (* Vaclav Kotesovec, Feb 13 2014 *)
-
PARI
my(x='x+O('x^50)); Vec(((1-x)^2-(1-x +2*x^2)*sqrt(1-2*x-3*x^2)) /(2*x*sqrt(1 - 2*x -3*x^2))) \\ G. C. Greubel, Mar 01 2017
Formula
Equals (1/2) * A024997(n+1).
From Vladeta Jovovic, Jan 01 2004: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*binomial(2*k+1, k+1).
E.g.f.: exp(x)*(BesselI(0, 2*x)+BesselI(2, 2*x)). (End)
From Paul Barry, Sep 17 2005: (Start)
G.f.: ((1-x)^2 - (1-x)*sqrt(1-2*x-3*x^2))/(2*x*sqrt(1-2*x-3*x^2)).
a(n+1) = Sum_{k=0..n} C(n, k)*C(k+1, k/2+1)*(1+(-1)^k)/2. (End)
D-finite with recurrence (n+1)*a(n) +(-3*n+1)*a(n-1) +(-n-5)*a(n-2) +3*(n-3)*a(n-3)=0. - R. J. Mathar, Nov 26 2012
a(n) ~ 3^(n-1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Feb 13 2014
Prepend 1 to the data, assume offset 0, and denote the resulting sequence alpha. Then alpha(n) = Sum_{k=0..n} Sum_{j=0..k} A359364(n, n - j). - Peter Luschny, Jan 10 2023