cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025179 a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is an integer, s(0) = 0, |s(1)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2, s(n) = 1. Also a(n) = T(n,n-1), where T is the array defined in A025177.

Original entry on oeis.org

1, 4, 10, 29, 81, 231, 659, 1891, 5443, 15718, 45508, 132067, 384047, 1118820, 3264642, 9539787, 27913083, 81769236, 239794422, 703906719, 2068153899, 6081507831, 17896695831, 52703944965, 155310270101, 457956633826, 1351132539604
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[Rest[CoefficientList[Series[((1-x)^2-(1-x)*Sqrt[1-2*x-3*x^2]) /(2*x*Sqrt[1-2*x-3*x^2]), {x, 0, 20}], x]]] (* Vaclav Kotesovec, Feb 13 2014 *)
  • PARI
    my(x='x+O('x^50)); Vec(((1-x)^2-(1-x +2*x^2)*sqrt(1-2*x-3*x^2)) /(2*x*sqrt(1 - 2*x -3*x^2))) \\ G. C. Greubel, Mar 01 2017

Formula

Equals (1/2) * A024997(n+1).
From Vladeta Jovovic, Jan 01 2004: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*binomial(2*k+1, k+1).
E.g.f.: exp(x)*(BesselI(0, 2*x)+BesselI(2, 2*x)). (End)
From Paul Barry, Sep 17 2005: (Start)
G.f.: ((1-x)^2 - (1-x)*sqrt(1-2*x-3*x^2))/(2*x*sqrt(1-2*x-3*x^2)).
a(n+1) = Sum_{k=0..n} C(n, k)*C(k+1, k/2+1)*(1+(-1)^k)/2. (End)
D-finite with recurrence (n+1)*a(n) +(-3*n+1)*a(n-1) +(-n-5)*a(n-2) +3*(n-3)*a(n-3)=0. - R. J. Mathar, Nov 26 2012
a(n) ~ 3^(n-1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Feb 13 2014
Prepend 1 to the data, assume offset 0, and denote the resulting sequence alpha. Then alpha(n) = Sum_{k=0..n} Sum_{j=0..k} A359364(n, n - j). - Peter Luschny, Jan 10 2023